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Abstract: 

Chapter 1 of this report focused on the assessment of eastern redcedar encroachment in central Nebraska 

with Landsat and multilayer perceptron. The increase in Juniperus virginiana (redcedar) has a significant 

influence on the grassland ecosystem of the Nebraska Sand Hills. Current redcedar encroachment estimates 

are mostly localized based on pixel counting approach that do not provide the spatial and temporal variation 

present within the study area. This study uses object-based image analysis, machine learning, and sampling-

based design to estimate the current and historical encroachment rates. The training samples generated 

using object-based image analysis were refined using visual image interpretation to select pure pixels. 

Multilayer perceptron (MLP) and random forest classifier were trained and tested to classify 1990, 2000, 

2010, and 2020 Landsat images. The classified images were then used to design stratified sampling to 

calculate and estimate the current and historical redcedar encroachment. A comparison showed MLP 

extracted redcedar with higher accuracy than the random forest classifier. The estimates show redcedar 

increased annually by 1.07 -10.95% from 1990-2000, 0.35 -3.85% from 2000-2010, 4.64-5.01% from 2010-

2020, and 2.26-11.19% from 1990-2020. The highest encroachment is distributed in counties with a high 

proportion of Loess canyons and hills. The study reveals that pure pixels selected from winter months using 

visual interpretation, object-based image analysis, MLP, and the stratified sample provide unbiased 

estimates of the redcedar area and its encroachment rate. The study demonstrates the potential to extrapolate 

regional assessments of woody species encroachment in the North American Great Plains.    

The next chapter, Chapter 2, covered the use of Markov chain-cellular automata model to predict and assess 

Juniperus virginiana (redcedar) encroachment in central Nebraska. Eastern redcedar (Juniperus virginiana) 

encroachment is one of the primary threats to the native grasslands in the North American Great Plains. 

Redcedar encroachment not only reduces the biodiversity but also alters ecosystem services such as 

groundwater recharge and pasture habitat, both vital for the socio-economy in the region. Redcedar, an 

invasive native species primarily susceptible to fire proliferated the grasslands with reduction of fire 

intensity, frequency, and availability of suitable environmental and socio-economic conditions. This study 

uses Markov chain and cellular automata (Markov-CA) model to characterize the spatial and temporal 

distribution of redcedar (a dominant evergreen species in the study area) encroachment. A multi-layer 

perceptron (MLP) neural network optimized for hidden layers, regularization, and dropout ratio were used 

to identify and extract the redcedar from 1990, 2000, and 2020 Landsat images. Markov-CA approach was 

used to determine the transition probabilities, transition potential, and redcedar distribution for 2020, 2050, 

and 2100. The different encroachment rate present in study area were calculated using transition 

probabilities from the eastern, Halsey National Forest, northern, and southern areas. The northern part 

showed area estimates closer to stratified random sampling estimates and also had consistent transition 

probabilities. The predicted redcedar cover using northern area transition probabilities, increased by more 
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than two-fold (3899 km2) in 2050 and four-fold (6887 km2) in 2100 when compared with an area of 1767 

km2 in 2020. Halsey National Forest, an area largely modified by humans because of various management 

practices showed the decreasing redcedar encroachment over time. The southern transition probabilities 

resulted in highest redcedar encroachment while the eastern area transition probabilities resulted in the least 

encroachment. The study shows that the redcedar encroachment scenarios with various encroachment 

pattern can be used to inform the decision-makers and be incorporated into various biophysical models to 

simulate effects of encroachment (e.g., hydrological effects of redcedar encroachment). 

The third chapter, Chapter 3, evaluated redcedar encroachment impacts on water resources in Nebraska 

Sandhills. Worldwide, tree or shrub dominated woodlands have encroached into herbaceous dominated 

grasslands. While very few studies have evaluated the impact of Eastern Redcedar encroachment on the 

water budget, none have analyzed the impact on water quality. In this study, we evaluated the impact of 

redcedar encroachment on the water budget in the Nebraska Sandhills, a major recharge zone for the High 

Plains Aquifer, and how the decreased streamflow would increase nitrate and atrazine concentrations in the 

Platte River. We calibrated a Soil and Water Assessment Tool (SWAT model) for discharge, recharge, and 

evapotranspiration. Using a moving window (3x3 m to 7x7 m) with a dilate morphological filter, 

encroachment scenarios of 11.9%, 16.1%, 28.0%, 40.6%, 57.5%, 72.5% and 100% were developed and 

simulated by the calibrated model. At 11.9% and 100% encroachment, discharge was reduced by 4.6% and 

45.5%, respectively in the Upper Middle Loup River, a tributary to the Platte River. With 28% of the Platte 

River water originating from the Loup River, discharge in the Platte River, a major water source for Omaha 

and Lincoln, at encroachment levels of 28%, 57.5%, and 100% would decrease by 2.6%, 5.5%, and 10.5% 

respectively. This reduction in streamflow could increase nitrate concentrations from 1.44 to 1.61 m L-1, 

and atrazine from 1.22 to 1.37 µg L-1. The recharge decreased by ___and the ET increased by ___. At 28% 

encroachment, the modeled risk level for atrazine would increase from (1) Low Risk to 2 (At Risk) and the 

dual risk of nitrate and atrazine could increase from Medium Low Risk to Medium Risk, based on our 

modeling assumptions.  

The last chapter, Chapter 4, focused on combined impacts of redcedar encroachments and climate change 

on water resources in the Nebraska Sandhills. The Nebraska Sand Hills (NSH) is considered a major 

recharge zone for the High Plains Aquifer in the central United States. The uncontrolled expansion of the 

eastern redcedar (Juniperus Virginiana) under climate warming is posing threats to surface water and 

groundwater resources. The combined impact of land use and climate change on the water balance in the 

Upper Middle Loup River watershed (4,954 km2) in the NSH was evaluated by simulating different 

combinations of model scenarios using the Soil Water Assessment Tool (SWAT) model. A total of 222 

climate models were ranked according to the aridity index and three models representing wet, median (most 

likely), and dry conditions were selected. Additionally, the impacts of carbon dioxide (CO2) emissions on 
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root water uptake were simulated. Four plausible redcedar encroachment scenarios, namely 0.5% (no 

encroachment), 2.4%, 4.6%, and 11.9%, were considered in the numerical simulations. We, therefore, built: 

i) the historical scenario (2000-2019) with the current climate and redcedar cover leading to baseline results; 

ii) the most-likely future scenario (2020-2099) with projected climate (50th percentile of aridity index 

distribution) and redcedar encroachment that was estimated by using a combination of neural network and 

Markov-chain cellular automata model; iii) 16 future scenarios (2020-2099) with different combinations of 

extreme climate (5th and 95th percentiles of aridity index distribution) and four hypothetical encroachment 

scenarios (0.5%, 2.4%, 4.6%, and 11.9%). The most-likely climate projection indicates that a warming 

pattern will be expected with a 4.1oC increase in average temperature over the 100-year period, and this 

will be associated with lower-than-normal precipitation (P). Nevertheless, the concurrent increase in 

temperature and CO2 concentration is likely to induce stomata closure by reducing potential (ETp) and 

actual (ETa) evapotranspiration losses. Projected P, ETp, ETa, and discharge (D) are expected to decrease 

by 6%, 39%, 24%, and 2%, respectively, while recharge (R) will likely increase by 27%. Finally, a 

sensitivity analysis of 16 combined climate and land use scenarios is presented and discussed. The scenario 

modeling approach presented in this paper can support decision-making by stakeholders for optimal 

management of water resources  
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Chapter 1. Assessing eastern redcedar (Juniperus virginiana) encroachment in central Nebraska 

with Landsat and multilayer perceptron 

1.1. Introduction 

The North American Great Plains hosts one of the most biologically significant grassland ecosystems with 

exceptional and distinct biodiversity (Olson and Dinerstein, 2002). However, the semi-arid grassland 

ecosystem has undergone significant changes with its range reduced by as much as 70% since European 

settlement (Samson et al., 2004). Besides the direct loss, the remnant grasslands are overexploited and 

fragmented through overgrazing, recreational activities, and proliferation of woody plant species (trees and 

shrubs) (Briggs et al., 2002; Knapp et al., 2008; Meneguzzo and Liknes, 2015; Van Auken, 2009). Eastern 

redcedar (Juniperus virginiana; hereafter redcedar) and Mountain juniper (Juniperus scopulorum) have 

proliferated the Great Plains, once dominated by tall and mixed-grass prairies (Barger et al., 2011). The 

woody encroachment rates are 5-7-fold higher (1.7% cover change yr−1) relative to ecoregions outside of 

the Great Plains (< 0.4% cover change yr−1) (Barger et al., 2011). For example, redcedar coverage in 

Nebraska increased from 9% to 17% from 2005 to 2012 (Meneguzzo and Liknes, 2015). Although 

introduction of redcedar has some ecological and socioeconomic benefits, it significantly reduces 

biodiversity (Knapp et al., 2008; Van Auken, 2009) and may fully convert a native grassland into a closed-

canopy redcedar forest in as little as 40 years (Briggs et al., 2002). In addition to biodiversity loss and socio-

economic impact (Anadón et al., 2014a; Twidwell et al., 2013), the encroachment causes direct and indirect 

impacts on the hydrological (stream runoff,  groundwater recharge) (Huxman et al., 2005; Zou et al., 2018), 

carbon (alters carbon and carbon accumulation) (Asner et al., 2003; McKinley and Blair, 2008; Norris et 

al., 2001) and nutrient cycles. The primary factors that accelerate redcedar encroachment are exclusion or 

reduction of wildfires, intensive grazing, and climate change (Briggs et al., 2002; Fowler and Konopik, 

2007). Other factors that aid in the process are edaphic (Rodriguez-Iturbe, 2000), above and belowground 

competition (Brown and Archer, 1999; Wilson and Witkowski, 1998), biogeochemical and 

biophysiological properties, land degradation as a part of desertification process or successional process of 

an ecosystem (Briggs et al., 2002; Cordova et al., 2011; Van Auken, 2009).   

Remote sensing is widely used to identify the species distribution (Fassnacht et al., 2016; Ghosh et al., 

2014; He et al., 2015; Noujdina and Ustin, 2008; Ustin et al., 2004; Weisberg et al., 2007), plant invasions 

(Alvarez-Taboada et al., 2017; Bradley, 2014; Peerbhay et al., 2016), and potential distribution of invasive 

species (Baidar et al., 2017; López and Stokes, 2016; Rocchini et al., 2015). Redcedar, or in general conifer 

species have been identified using satellite images (Filippelli et al., 2020; C. Wang et al., 2018; Weisberg 

et al., 2007). Remote sensing-based encroachment assessment involves the identification of individual or 

groups of plants/canopies (based on the spectral and spatial characteristics) in images (Meddens et al., 

2016). In higher-resolution aerial or satellite images, individual or groups of species are interpreted with 
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manual, semi-automatic, or object-based image analysis (Asner et al., 2003; Coop and Givnish, 2007; 

Filippelli et al., 2020; Hudak and Wessman, 1998; Weisberg et al., 2007). Moderate resolution satellite 

images are mainly used to evaluate spatial and temporal distribution of species at the regional scale. 

Automatic and semi-automatic methods are preferred and developed with the availability of multi-spectral, 

temporal, and multi-sensor (optical, LIDAR, microwave) images. However, due to spectral similarity 

between redcedar with other vegetation types (e.g., vegetation in wetlands) and sparse occurrence (early 

stage of encroachment), the differentiation of redcedar has shown mixed results. For example, although 

(Kaskie et al., 2019) reported high accuracy (88.9%) using matched filtering approach to differentiate 

redcedar on snow-covered images, the accuracy was lower (74.1%) on non-snow-covered and seasonal 

images. The sub-pixel approaches mainly used to extract species in mixed pixels have difficulty in proper 

identification of endmembers spectra. A reference spectral library representing pure reflectance values in 

laboratory conditions may not represent actual reflectance values due to changes in radiometric or spatial 

characteristics (Quintano et al., 2012), while image based endmembers may vary greatly with space (e.g., 

different scene) and time (multi-year) (Sankey et al., 2010). Similarly, a pixel and phenology-based method 

as proposed by (Wang et al., 2017) showed limitations due to seasonal availability of cloud-free images (J. 

Wang et al., 2018). The data fusion-based methods reported a marginal (0-5%) increase in Juniper detection 

and delineation when compared with LIDAR or microwave-based methods (Erdody and Moskal, 2010; 

Hyde et al., 2006). A neural network with multiple hidden layers and neurons learn complex pattern and 

hidden relationship between the target and explanatory features and provide higher accuracy in object 

detection and extraction.  

Machine learning approaches such as support vector machine, random forest, and neural network have 

shown promising results in classifying and detecting an object of interest from remote sensing images. 

Random forest classifier with a smaller number of hyper parameters is easily implemented and provide 

accuracy similar to support vector machine (SVM) and artificial neural networks (ANN) with single hidden 

layer. In general, neural network-based with multiple hidden layers have resulted in higher accuracy than 

the support vector machine and random forest methods while classifying land cover and land use maps (He 

et al., 2016; Hu et al., 2015; Kussul et al., 2017; Raczko and Zagajewski, 2017). Neural network, however, 

require large quantity of high-quality training samples: any noise present in samples my result in inaccurate 

representation of features. The most used neural network architecture in remote sensing is the multilayer 

perceptron (MLP), convolution neural network (CNN), recurrent neural network (RNN), autoencoders 

(AE), deep belief networks (DBN), and generative adversarial networks (GAN) (Li et al., 2018; Ma et al., 

2019). MLP is widely used in image classification (Del Frate et al., 2007; Zhang et al., 2018) and extraction 

of targeted features such as rice (Tang et al., 2022), and surface water extraction (Jiang et al., 2018). MLP 

typically with a single, or additional hidden layers can learn non-linear relationships between the input and 



 

 

14 

response variables with a smaller number of samples (Tang et al., 2022; Zhang et al., 2018). A quality 

samples for this research is generated through combination of object-based image classification of high-

resolution satellite/aerial images and visual interpretation.  

While remote sensing-based methods are widely used to extract and estimate encroachment, most rely 

on a pixel counting approach (Olofsson et al., 2014). The pixel counting method is biased partly because it 

uses each of the pixels (population) to estimate an area and does not consider the classification error. A 

sampling-based approach such as suggested by (Olofsson et al., 2014) uses samples derived from the 

interpretation of high-resolution images to provide unbiased area estimates and associated encroachment 

rates. The goal of this study is to examine the application of a MLP with multiple hidden layers to assess 

redcedar encroachment in central Nebraska using Landsat images. The integration of high-resolution 

National Agriculture Imagery Program (NAIP) images with MLP helps identify and locate redcedar with 

higher accuracy, address some of the limitations imposed in the above-discussed methods and provides a 

simple and robust approach to identify redcedar. The specific objectives of this research are to 1) integrate 

object-based image analysis and MLP to extract redcedar; 2) evaluate and validate the extracted redcedar 

using stratified sampling; and 3) estimate annual encroachment rates from 1990-2020.    

1.2. Materials and Methods 

1.2.1. Study area  

The study area Figure 1-1 lies in central Nebraska and covers the hotspots of redcedar encroachment 

in the Nebraska Sand Hills Figure 1-1.b. The study area covers different percentage of tree canopy cover 

and redcedar percent as shown in  (Meneguzzo and Liknes, 2015). The area covers latitude from 44.46 N 

to 42.99 N and longitude from 102.48 W to 99.34 W covering an area of 70,759 km2. The area is 

characterized by strong topographical variation with a wetter climate in the east and drier in the west. The 

study area is primarily dominated by permeable coarse sand that promotes recharge to the underlaying High 

Plains Aquifer while sandy soil is present in the interdunal valleys (Barnes et al., 1984). The mean annual 

temperature is 10˚C while precipitation ranges from 400-500 mm. As per the 2016 National Landcover 

Database (NLCD), the area is dominated by grassland (84%), hay/pasture (8.7%), and wetlands (4%). 

Forest occupies around 1% of the land area and is composed of evergreen (0.30%), mixed (0.35%), and 

deciduous (0.35%) trees (Dewitz, 2019).  

Native grass species such as little bluestem (Schizachyrium scoparium), switchgrass (Panicum 

virgatum), sand dropseed (Sporobolus cryptandrus), yucca (Yucca spp.), and Kentucky bluegrass (Poa 

pratensis) are dominant species. Tree species include redcedar, ponderosa pine, hackberry, green ash, red 

mulberry, bur oak, American elm, eastern cottonwood, honeylocust, and Siberian elm. Redcedar, a native 

conifer species of the United States, is distributed to the East of the Rockies and occupies the eastern and 

central portions of Great Plains (Lawson, 1990) . Although their expansion was originally limited by 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/schizachyrium-scoparium
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/switchgrass
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/panicum-virgatum
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/panicum-virgatum
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/poa-pratensis
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wildfires, redcedar with drought resistant characteristics has proliferated into grasslands as well as 

understory in mature oak-hickory and deciduous forest (Lassoie et al., 1983). For example, among trees 

with at least three or twelve-centimeter diameter at breast height, redcedar comprises at least 80% and 

ponderosa pine occupies 18% of live conifer species (see Supplement1) and are considered dominant 

species in Nebraska (Forest Service, 2020). The study area also hosts Halsey National Forest, a largest 

human planted forest in the United States (Hellerich, 2006). Redcedar although largely occupies stream 

channels and Loess hills, the percentage of conifer is increasing at an alarming rate, especially in the areas 

excluded from Forest Inventory Analysis (FIA). FIA defines forest as land with at least 10 percent live-tree 

canopy cover, at least 4046 m2 in size, and 36 m wide (Meneguzzo et al., 2018). Many redcedar and 

ponderosa pine species in the forest and trees outside the forest show the growing concern of invasive nature 

and the need to have an accurate map depicting the spatial and temporal distribution in Nebraska. 

 

 

  

 

 

Figure 1-1. Study area illustrating the training sample (redcedar and others) used to classify 1990, 2000, 

2010, and 2020 Landsat images. Some of the training samples were collected from regions outside of the 

study area. Background images shows NLCD percent tree canopy cover from 2016. 
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1.2.2. Data  

Landsat 5 and 8 images with 30 m spatial resolution were used to extract the redcedar. We used surface 

reflectance images from winter months (November-April) hosted in the Google Earth Engine (GEE) with 

cloud cover less than 30% from 1990, 2000, 2010, and 2020. The winter month (dormant period) images 

helped to differentiate the redcedar (green vs dry/yellow leaves) from other species present in the study 

area. Since a limited number of snow-free images were available within a year and the number and density 

of redcedar does not change significantly within 1-2 years, we used the preceding and the following years 

to increase the number of snow and cloud-free images (i.e., a 1990 mosaic contains images from 1989 and 

1991) and reduce the uncertainties caused by the limited data availability. NAIP data sets consists of either 

red, green, blue, or near-infrared spectral bands with a spatial resolution between 0.6 to 1 m. Training 

samples were generated using 2020 and 2010 NAIP images. Samples to validate the areas estimates were 

generated using visual interpretation of 2020, 2010, 2003 NAIP and 1993, 1994, and 1999 panchromatic 

digital orthophoto quadrangles (DOQ).  

 

1.2.3. Redcedar encroachment assessment  

We used MLP and random forest classifiers to identify and extract redcedar from Landsat 5 and 8 

images. The process involves Figure 1-2 i) subset, classify, interpret, and select pure pixels to generate 

training samples, ii) spectrally transform and combine original bands of Landsat, iii) train, test and predict 

using MLP, and v) estimate and validate the redcedar using stratified sample design.   

 

 

Figure 1-2. Workflow to differentiate and estimate redcedar encroachment 

using an integration of object-based image analysis, multilayer 

perceptron, and stratified sampling.  

 

1.2.4. 2.3.1 Image pre-processing   

The Landsat images were mosaicked using the median values and transformed to compute principal 

component analysis (PCA), hue, saturation, and value (HSV) (Smith, 1978), and tasseled cap (TCAP) (Crist 
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and Cicone, 1984) images. The normalized difference vegetation index (NDVI) [NIR – Red)/(NIR + Red] 

(Tucker, 1979), and normalized difference built-up index (NDBI) [SWIR− NIR)/( SWIR + NIR (Zha et al., 

2010) were also calculated. We then stacked the PC1, PC2, and PC3-PCA, hue-HSV, brightness, greenness, 

wetness-TCAP, NDBI, and NDVI with the original bands as an input to provide spectral variability for the 

classifier. We included NDBI as the SWIR-based indices are associated with conifer forest structure (Cohen 

and Spies, 1992; Lobell et al., 2001; Puhr and Donoghue, 2000).  

 

1.2.5. Collection of training samples  

The training samples were generated using classification and manual interpretation of NAIP images 

for 2010 and 2020. High-resolution NAIP images provide proper identification of redcedar locations. The 

areas representing different tree canopy cover Figure 1-1 were clipped and classified using object-based 

image classification. The smaller subset of images not only improved the processing time but also provided 

a homogenous background for easier redcedar identification and extraction. The object-based method 

involves segmentation and classification of images. The segmentation splits the image into separated 

regions (objects) based on spectral and spatial similarity (Im et al., 2008). We used eCognition Developer 

9 to perform object-based classification. The multiresolution segmentation algorithm splits the images into 

segments based on the shape, compactness, and scale parameter. The shape parameter controls the spectral 

homogeneity, compactness defines the object shape between the smooth boundaries and compact edge, and 

scale determines the size of the object (Benz et al., 2004). To include the smaller redcedar, we segmented 

the images with a combination of scale (20), color (0.7), and shape (0.3) parameters. The objects were then 

classified using the nearest neighbor classifier. The nearest neighbor uses a set of samples (selected using 

visual interpretation) from different classes and assigns values to each object. We used the mean brightness, 

a standard deviation of the individual bands, and NDVI to differentiate the redcedar from other species.   

The sample points, generated randomly within the boundaries of extracted redcedar cover, was then 

overlaid on Landsat images to identify the pure Landsat pixels through visual interpretation. Pure pixels 

were defined when a pixel entirely contains redcedar, mostly the center pixels within boundary defined by 

classified NAIP images. Although, a patch may occur as redcedar, due to similar spectral and temporal 

characteristics, the samples may include Pinus species. The training samples were collected in the ArcGIS 

with aided by visual interpretation of images in Google Earth Pro, digital orthophoto quadrangle (DOQs). 

A total of 1065 [348, 717] and 785 [276,509] training samples were generated for redcedar and others 

respectively for 2010 and 2020 respectively. Others class contain samples from grassland, water, barren, 

wetland, and built-up areas.   

 

1.2.6. Image classification  
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The MLP algorithm typically has a fully connected network of an input, hidden, and output layers. We 

modified the network to include more hidden layers Figure 1-3 so that neurons on multiple hidden layers 

can transform and learn patterns at multiple levels of abstraction. The training involves learning with an 

objective function that measures the error between the output and desired scores and alters internal 

parameters (e.g, weights) to reduce the error (Del Frate et al., 2007). The backpropagation algorithm 

updates and optimizes weights sequentially in the forward and backward directions. 

 

 

Figure 1-3. Multilayer perceptron network architecture with multiple hidden layers for 

Landsat image classification.  

 

To reduce the difference in spectral response between the Landsat 5 and 8 sensors, we developed an 

L5-MLP and L8-MLP model. The optimum number of hidden layers, the number of neurons, and activation 

function were determined using a random search hyper-parameter tuning algorithm. The tuning process 

determined the 5 and 3 fully connected hidden layers with 32 nodes in each layer for L5-MLP and L8-MLP. 

A combination of a dropout ratio of 0.2 and regularization (L2) was used to facilitate the learning process 

and avoid overfitting the model. A rectified linear unit (ReLU) was selected as a non-linear mapping 

function. The parameters of the neural network were tuned using 100 epochs with 70% of the samples to 

train and 30% to test the model. The neural network architecture was implemented using GEE and 

TensorFlow library in Google Cloud Service Figure 1-2. The L5-MLP model constructed with 2010 data 

was also used to classify the 1990 and 2000 images as they use the same Landsat 5 sensor. The resultant 

probability maps were reclassified using the threshold of 10% or more to extract the redcedar cover.   

In order to compare the performance, a random forester classifier was also developed using training 

samples of 2010 and 2020. The number of variables per split parameter were the square root of the number 

of features in the model (a default parameter in GEE) consistent to the studies using random forest for 

remote sensing applications (Belgiu and Drăgu, 2016). The optimal number of trees was tested using 20, 

50, 100, and 200 trees. We used 20 trees for 2010 and 200 trees for 2020 on final random forest models 

(Table 1-2).     
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1.2.7.  Area estimates and accuracy assessment   

The area of the redcedar cover was estimated using the stratified design and estimation method at 95% 

confidence interval (Cochran, 1963; Olofsson et al., 2013). The pixel counting method does not consider 

classification errors, thus resulting in biased area estimates that may not provide a true representation of 

land cover classes (Olofsson et al., 2013; Stehman, 2009). The stratified sampling-based approach considers 

classification error as well as the proportion of the landcover classes thereby providing a more accurate 

representation of land cover classes (Olofsson et al., 2014). The classified images from 1990, 2000, 2010, 

and 2020 were stratified into the redcedar and other classes. Stratified random sampling approach was used 

to estimate the number of samples from each of the classified images. The number of samples was 

determined using 0.01 (1%) target standard error for overall accuracy. Of the 909 points generated, 305 

samples were allocated to redcedar while 604 samples were allocated to other strata. Although (Olofsson 

et al., 2014) suggested a minimum of 50 samples for smaller classes, our initial sample allocation of 50 to 

redcedar resulted in a larger confidence interval (higher uncertainty in the estimates), therefore we allocated 

larger samples to the redcedar. The samples were generated in GEE using AREA2 tool (Arévalo et al., 

2020; Bullock et al., 2020). The generated samples were labeled based on the visual interpretation of high-

resolution NAIP, USGS DOQs, and GEE images. A second analyst performed independent verification of 

the samples while any conflict was discussed to either include or exclude from the analysis based on agreed 

consensus. The overall, producer’s and user’s accuracy were calculated. A detail in method and equation is 

provided in (Cochran, 1963) and (Olofsson et al., 2013).   

The stratified estimation, however, results in higher omission error when the sample from a class 

occupying a small proportion of the study area falls into class with a larger proportion leading to uncertainty 

in precision of the estimates (Olofsson et al., 2020). Since redcedar encroachment is in the early stages (see 

Figure 1-10) and occupies a smaller proportion of the study area, we buffered the redcedar strata by one 

(30 m) and two pixels (60 m) to reduce the uncertainty caused by the higher weight of larger strata. The 

buffered maps were created by passing classified through morphological filter using focal max operation 

in GEE. The accuracy of the MLP model was evaluated using the accuracy and loss metrics (Géron, 2019). 

Encroachment rates were then calculated for the entire period between 1990-2020 and the decadal period 

between 1990-2000, 2000-2010, and 2010-2020.   

1.3. Results 

1.3.1. Training sample generation   

The object-based image classification approach was used to extract the redcedar from NAIP images. 

The visual interpretation shows a high level of correspondence between classified and reference images. 

Because images were clipped in areas of known redcedar and mostly contained homogenous grass cover as 

background (Figure 1-4 a,b,c), redcedar is well-differentiated from other species (Figure 1-4 d, e, f). 
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Although the boundary is overestimated by a fraction of pixels, the result fulfills the purpose of identifying 

pure pixels in Landsat images. Pure pixels were selected using larger redcedar cover e.g., Figure 1-4 a,d, 

and c, f containing multiple Landsat pixels, while smaller areas that do not represent redcedar cover in the 

Landsat images, (e.g., Figure 1-4 b, e) were not used.  

 

 

Figure 1-4. Redcedar identification using object-based image classification of National Aerial 

Imagery Program (NAIP) images (e.g., 2020). The upper row (a, b, c) shows the false-color 

composite of NAIP images while the bottom row (d, e, f) shows the extracted redcedar overlaid on 

the corresponding NAIP images. 

  

1.3.2. Spectral response of redcedar vs other classes  

The use of spectral transformation provides the difference in spectral response between classes for the 

MLP classifier. The spectral curve between the wetland vegetation, deciduous trees, and redcedar has a 

similar pattern in the visible and near-infrared spectrum Figure 1-5a. Spectral transformation provides the 

classifier with a differing response pattern between classes Figure 1-5b. For example, redcedar shows 

higher values in the first principal component (pc1) and lower values in NDBI and has lower brightness 

and higher greenness values in tasseled cap transformed images compared with wetland and deciduous 

classes Figure 1-5. A combination of the original bands and the spectrally transformed bands, therefore, 

provides spectral variability between classes for identification and classification.  
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Figure 1-5. Spectral response curves of redcedar vs. others land cover (deciduous, water, built-

up, wetland, grass, and barren) types in the study area with original (a) and spectrally transformed 

bands for median Landsat-8 winter images (b). The original bands represent the blue (B2), green 

(B3), red (B4), near-infrared (B5), and short-wave infrared (B6/B7).  

 

1.3.3. Model performance  

The internal model performance was evaluated using the accuracy and loss metric from training and testing 

data. The result shows that L8-MLP has better correspondence between the train and test accuracy and loss 

Figure 1-6a. The L5-MLP also shows a good correspondence between the train and test accuracy and loss 

below Figure 1-6b. The results from both models show the minimal presence of overfitting and underfitting 

as the accuracy and loss in training and testing data do not diverge by a huge difference.   

 

Figure 1-6. Internal model evaluation using the accuracy and loss function for the L8-MLP (a) and L5-MLP 

(b) model on the training and test dataset.  

 

1.3.4. Accuracy assessment and area estimates    

A comparison of MLP and random forester classifier shows that MLP provides better estimates of 

redcedar cover than the random forest classifier. With original classified images, MLP has higher overall, 

producer’s and user’s accuracy than the random forest classifier. With the buffered maps, the difference, 

however, is minimal (Table 1-1). The result from MLP models show high overall accuracy (>99%) for 
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classified maps of 1990, 2000, 2010, and 2020 along with the corresponding buffered maps (Table 1-1) at 

95% confidence interval. The high producer’s and user’s accuracy (>98%) of other classes such as 

agriculture, water, grassland, wetlands, built-up, and barren areas shows proper differentiation of redcedar 

(Table 1-1). However, redcedar showed higher omission error, especially in 1990, as the redcedar 

encroachment was at very early stages and occupied only fraction of pixel leading to mixed pixel effects. 

The use of class weight in a stratified estimator also contributes to higher omission error as it falls on a 

class with a high weight (Table 1-3). The use of a buffer (1 and 2 pixels) considerably reduced the 

omission error, although it also increased the commission error (Table 1-1).   

 

 

Table 1-1: Overall, producer’s and user’s accuracy for redcedar in 1990, 2000, 2010, 2020 at original, one and two pixels 

buffered redcedar maps.  

Labels Original One Pixel Buffer Two Pixel Buffer 

1990 

Overall accuracy (± 95% CI) 0.993(±0.007) 0.994(±0.006) 0.995(±0.005) 

Property/ Strata  redcedar others redcedar others redcedar others 

Area (ha)  606.79 68131.53 686.30 68063.83 765.50 67991.13 

95% Cl (ha)  470.49 470.49 409.58 409.58 334.82 334.82 

Producer's  0.21 1.00 0.47 1.00 0.69 1.00 

User's  0.84 0.99 0.84 1.00 0.84 1.00 
 

2000 

Overall accuracy (± 95% CI) 0.996(±0.005) 0.995(±0.005) 0.996(±0.003) 

Property/ Strata  redcedar others redcedar others redcedar others 

Area (ha)  512.63 68225.30 896.55 67853.58 1151.54 67605.09 

95% Cl (ha)  316.02 316.02 316.69 316.69 227.49 227.49 

Producer's  0.56 1.00 0.75 1.00 0.90 1.00 

User's  0.88 1.00 0.87 1.00 0.87 1.00 
 

2010 

Overall accuracy (± 95% CI) 0.996(±0.005) 0.997(±0.003) 0.996(±0.003) 

Property/ Strata  redcedar others redcedar others redcedar others 

Area (ha)  630.61 68106.21 1029.17 67720.96 1488.62 67268.01 

95% Cl (ha)  315.57 315.57 226.25 226.25 230.11 230.11 

Producer's  0.64 1.00 0.89 1.00 0.92 1.00 

User's  0.91 1.00 0.89 1.00 0.88 1.00 
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 Random forest classifier 

Producer's  0.18 1.00 0.75 1.00 0.90 1.00 

User's  0.91 0.96 0.89 0.99 0.87 1.00 
 

2020 

Overall accuracy (± 95% CI) 0.994(±0.006) 0.995(±0.005) 0.993(±0.005) 

Property/ Strata  redcedar others redcedar others redcedar others 

Area (ha)  913.79 67822.86 1521.47 67228.66 2169.28 66587.35 

95% Cl (ha)  385.21 385.21 316.09 316.09 319.71 319.71 

Producer's  0.63 1.00 0.85 1.00 0.90 1.00 

User's  0.92 1.00 0.91 1.00 0.90 1.00 

 Random forest classifier 

Producer's  0.41 1.00 0.82 1.00 0.91 1.00 

User's  0.94 0.98 0.92 1.00 0.90 1.00 

 

A visual comparison highlights that the redcedar coverage is well-represented by the MLP 

classification approach. The probability map Figure 1-7 from L8-MLP overlaid on corresponding NAIP 

images shows that redcedar is well-differentiated from other land cover classes and avoided 

misclassification, especially in areas that contained wetlands. Areas with significant redcedar coverage 

(Figure 1-7 a, b) have high redcedar probability (> 50%) while areas with no or little redcedar coverage 

have low redcedar probability (<10%). However, in some areas where the redcedar are mixed (understory 

or overlapping canopies) with deciduous trees and other vegetation (Figure 1-7 f, g), MLP showed limited 

success due to overlapping spectral signature.  
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Figure 1-7. A visual comparison between 2020 NAIP image (false-color composite) 

and extracted redcedar probability using L8-MLP. A darker tone of red color is 

redcedar while the lighter red (brighter) is deciduous trees or other vegetation in 

NAIP images.  

The estimated redcedar area of 606 ± 470 km2 in 1990 is greater than 512±316 km2 in 2000 (Table 1). 

The larger area estimates in 1990 compared to 2000 shows the effect of uncertainty due to lower producer’s 

accuracy (~20%) and larger confidence interval. Therefore, we used area estimates from one pixel buffered 

maps for further analysis. The use of buffered maps may, however, overestimate redcedar area and its 

associated encroachment rates. The redcedar area estimates in one and two pixels buffered maps increased 

consistently from 1990, 2000, 2010, and 2020 (Figure 1-8). The one- and two-pixel buffer reduced omission 

errors and range in confidence interval. The process, however, increased the commission error as the buffer 

covered more sample points at the boundaries. 

 
Figure 1-8. Comparison of redcedar cover between original, one, and 

two pixels buffered maps.   
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1.3.5. Pattern in redcedar encroachment   

We used one-pixel buffered maps to calculate redcedar encroachment rates. The results (Table S3) 

provide ranges in encroachment rates present in the study area at 10-year intervals. The time period from 

2000-2010 has the lowest encroachment rate while 1990-2000 has the highest. The overall (1990-2020) 

encroachment rate varies between 2.26 to 11.19% per year in the study area (Table S3). The range in 

encroachment rates provides the spatial and temporal variation in redcedar encroachment present in the 

study area that can be used to generalize rates for Nebraska.  

A visual interpretation of the redcedar encroachment shows a substantial change in the eastern, 

northern, and southern parts of the study area. The Loess canyons in the southern (Figure 1-9 e, f, g, h) and 

(Figure 1-9 I, j, k, l) hills along the Niobrara and Missouri Rivers in the northern part shows the highest 

increase in redcedar. The Halsey Forest (Figure 1-9 a, b, c, d), the largest man planted forest (Hellerich, 

2006), shows little change due to the implementation of management practices such as prescribed burning. 

The results show that redcedar favors certain landscape types and could be managed through the proper 

implementation of management practices.  

  

 

Figure 1-9. Pattern in redcedar encroachment along the Halsey 

National Forest (a, b, c, d), Missouri River (e, f, g, h), and Loess 

canyons (i, j, k, l) in 1990, 2000, 2010, and 2020.  
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1.4. Discussion  

This study shows promising results in redcedar encroachment assessment in central Nebraska. A 

combination of object-based image analysis, MLP, winter images, and sampling-based method helped 

reduce uncertainty to provide unbiased area estimates and encroachment rates. The identification of pure 

pixels using visual interpretation of training samples generated using OBIA provided an unambiguous 

representation of the redcedar location necessary for the classifier to learn and discriminate the non-linear 

association between the target and other classes. Similarly, high spatial resolution images (e.g, NAIP) 

provide high-quality and reliable training samples that are a basis for land use and cover classification when 

field surveys are difficult and costly to conduct (Copass et al., 2018). The quality, quantity, and distribution 

of training samples are the most important determinants for proper quantification of classes (Mellor et al., 

2015; Millard and Richardson, 2015; Zhou et al., 2020; Zhu et al., 2016). Although a large number of 

training samples of major and minor classes leads to the most accurate classification results (Hermosilla et 

al., 2022; Zhu et al., 2016), limited occurrence of species (e.g., redcedar) may lead to a compromise to find 

the balance between the quality and quantity of the training samples. An incorrectly labeled training sample 

may increase data noise leading to a reduction in classification accuracy (Mellor et al., 2015; Rodriguez-

Galiano et al., 2012; Rogan et al., 2008). With an early stage of encroachment (Figure 1-10) and limited 

coverage of redcedar, the research focused on identifying pure pixels using high-resolution images.   

The results show that the MLP classifier produced better results than the random forest classifier. 

While random forest and single hidden layered MLP produce comparable results in feature identification, 

land use and land cover analysis, extraction of redcedar from Landsat images were less accurate than the 

MLP classifier. With multiple hidden layers provides hierarchical framework to reveal the non-linear 

relationship at multiple scale between input and response variables (Géron, 2019; LeCun et al., 2015). The 

two MLP models were developed to reduce the difference in spectral and radiometric quantization between 

the Landsat 5 and 8 sensors. We also assumed that the reflectance images, corrected for atmospheric effects, 

should have minimal spectral shifts due to different acquisition conditions (Olthof et al., 2005; Song et al., 

2001). The trained models were optimized for the number of hidden layers and units using random search 

hyperparameter tuning. While the model used a combination of a dropout ratio (0.2) (Srivastava et al., 2014) 

and a regularization (L2) parameter to prevent overfitting. Although a smaller number of samples were 

used, a shallow MLP with fewer hidden layers (5 and 3) and parameters [4,000-5,000] does not require 

thousands of samples to learn like deep neural networks. The results show that MLP with shallow 

architecture with smaller training samples identified and extracted redcedar with high accuracy given that 

the contrasting spectral (PCA, HSV, NDVI, and NDBI) and temporal (winter images) attributes were taken 

into consideration. For example, the redcedar showed a differing spectral pattern when using the first 

principal component and NDBI compared with other land cover classes (Figure 5b). Similarly, a similar 
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spectral pattern in the first principal components between redcedar and water differed in NDBI. Thus, the 

combination of multiple factors helped reduce the misclassification errors, especially in wetlands. The 

current method shows potential to be applied in wider spatial and temporal settings in differentiating the 

redcedar as well as other species of interest. However, the extracted redcedar cover also represents 

evergreen vegetation such as pine species as they exhibit similar spectral and temporal characteristics.  

Due to redcedar occupying a small fraction (< 1%) of the study area, the stratified estimator showed a 

higher error of omission, especially in 1990 when the redcedar were sparsely distributed. The higher 

omission errors are also due to the mixed pixel effect as sparse redcedar distribution was not captured by 

the Landsat resolution at 30 m. Although an object with at least one-half the diameter of a pixel is detected 

by sensors, with radiometric, and geometric errors, along with the associated sample-scene phase, a 

significantly smaller pixel size (or larger object) is required to detect and resolve an object (Cowen et al., 

1995; Myint et al., 2011). With the largest canopy diameter between 4-5 m, there need to be more than 10 

trees for consistent representation. Studies show that the redcedar density with equal and greater than 50% 

has 90% or greater detection probabilities (Kaskie et al., 2019; Wang et al., 2017). Therefore, the redcedar 

area might be underrepresented in areas with a newer establishment or lower densities. A subpixel 

approaches may provide early-stage encroachment given proper identification of endmembers spectra. With 

changes in radiometric and spatial characteristics, esp. in historical images, sub-pixel approach has shown 

limitations (Quintano et al., 2012). Future research involving neural network that can learn sub-pixel 

structure may provide early stage encroachment (He et al., 2021). Although the images are unable to 

represent early-stage encroachment, they capture the moderate and significant encroachment scenarios that 

have higher environmental effects. A difference of 30 years (1990-2020) should compensate for some of 

the undetected areas in the early years. The extracted redcedar cover also represents other evergreen tree 

species that have similar spectral and temporal characteristics such as ponderosa pine and rocky mountain 

juniper even though we used winter images to reduce the influence of other land cover classes. The omission 

errors decreased with the inclusion of 1- and 2-pixel buffer in the classified maps, showing the effect of 

mixed pixels at the boundaries of maps.   

A comparison of our annual encroachment rate (2.26 -11.19%) provides the spatial and temporal 

variation of redcedar encroachment in the study area. Our estimates are closer to the estimates of 2% by 

(Walker and Hoback, 2007), and encompasses 2.3% by (Filippelli et al., 2020). Some differences could be 

due difference in spatial and temporal coverage and removal of < 10% cover from those estimates as 

approximately half of the treed area lies outside of the forest in the Great Plains (Meneguzzo et al., 2018). 

Similarly, our estimates of redcedar cover of 4.64 % in Custer County is closer to 2% and 8.7% forest cover 

of the National Land Cover Database (NLCD) and Tree canopy cover (TCC) produced by US Forest 

Service. However, one-pixel buffer used to decrease omission error increases commission error that may 
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overestimate the redcedar cover and associated encroachment rate. The other difference in estimates could 

be due to the method used or the scale dependence of redcedar encroachment. Our results at 900 m2 

resolution generalizes the encroachment rate of finer scale resolution maps (Weisberg et al., 2007). Higher 

resolution satellite or aerial images, corrected for variation in radiometric properties, provides 

encroachment at finer scales (Falkowski et al., 2017). The accuracy of the extracted redcedar may have 

some uncertainties due to the limited availability of high-resolution images. We used the nearest available 

NAIP and DOQs images to define the validation points with the assumption that the redcedar coverage does 

not change significantly within 2-3 years at a coarser scale. However, the temporal difference might have 

introduced some uncertainties while selecting reference pixels. For example, the 1990 redcedar cover was 

validated using 1993 panchromatic images through visual interpretation. The differentiation of redcedar 

from deciduous trees and wetland vegetation were difficult in panchromatic images taken in growing 

seasons. Studies have shown that the presence of understory redcedar, dead leaves, and bark might lead to 

mixed pixels that are challenging to classify (Gong et al., 2012; Herold et al., 2008).   

With a high annual increase rate, the redcedar encroachment will have a significant effect on the natural 

resources and environment of the Nebraska Sand Hills. Given the semiarid-nature and vulnerable 

geographic setting and the ability of the redcedar to grow under a variety of soil types and climatic 

conditions, redcedar will proliferate the grasslands of the Sand Hills. The current encroachment, although 

limited under the loess hills and nearby streams, will eventually lead to invasion. The encroachment map 

(regional and county scale), paired with other maps such as fire practices, topography, and soil, could help 

prioritize management practices.  

 

1.5. Conclusions  

The study shows that a multilayer perceptron (MLP) with multiple hidden layers and optimization 

provides a proper and accurate representation of redcedar encroachment. Given the proper identification of 

pure pixels from the winter images, a relatively smaller number of training samples also provides highly 

accurate maps. The study highlighted that through temporal transfer of MLP model, species distribution 

from historical images can be effectively identified and extracted when the training samples are limited or 

unavailable. With the availability of the sensor harmonization, a single MLP model should be able to extract 

species from multiple Landsat sensors. The unbiased estimates from sampling-based method provides 

spatial and temporal variation in encroachment scenarios in the study area. The encroachment range 

provides encroachment patterns that exists in larger areas vital for formulating proper management plans 

and practices.  
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1.6. Supplement Figure and Table 

 

Figure 1-10. Size class distribution of basal area per acre (BAA) and tree per acre (TPA) 

estimates from forest inventory analysis (FIA) database in 2019 for Nebraska. Highest 

BAA and TPA shows redcedar as a dominant species with smaller basal area. 

 

Table 1-2: Accuracy of random forest classifier with different number of trees  
2010 

 
20 tree 50 tree 100 tree 200 tree 

Overall accuracy 0.964 (± 0.014) 0.961 (± 0.015) 0.963 (± 0.015) 0.963 (± 0.015) 
 

redcedar other redcedar other redcedar other redcedar other 

Producer's  0.21 0.99 0.18 0.99 0.20 0.99 0.20 0.99 

User's  0.91 0.96 0.91 0.96 0.91 0.96 0.91 0.96 
 

2020 

Overall accuracy 0.977 (± 0.012) 0.978 (± 0.011) 0.980 (± 0.011) 0.985 (± 0.009) 

Producer's  0.32 0.99 0.32 0.99 0.34 0.99 0.41 0.99 

User's  0.93 0.97 0.93 0.97 0.93 0.98 0.93 0.98 
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Table 1-3: Error matrix for redcedar and others class with original maps, one-pixel buffer, and two-pixel buffer. The values in 

square brackets represent the proportion of each class in the corresponding year.  

Year 

 
Reference One Pixel Buffer Two Pixel Buffer Model 

 
redcedar others redcedar others redcedar others 

 

1990 redcedar 293 [0.002] 55 [0] 294 [0.005] 58 [0.001] 295 [0.008] 58 [0.001] MLP 

others 4 [0.007] 566 [0.991] 3 [0.005] 563 [0.989] 2 [0.004] 563 [0.987] 

2000 redcedar 264 [0.004] 35 [0.001] 264 [0.01] 38 [0.001] 265 [0.015] 40 [0.002] MLP 

others 2 [0.003] 598 [0.992] 2 [0.003] 595 [0.986] 1 [0.002] 593[0.981] 

2010 redcedar 275 [0.006] 28 [0.001] 276 [0.013] 33 [0.002] 276 [0.02] 37 [0.003] MLP 

others 2 [0.003] 598 [0.99] 1 [0.002] 593 [0.983] 1 [0.002] 598 [0.976] 

redcedar 253 [0.008] 24 [0.001] 273 [0.019] 34 [0.002] 275 [0.028] 40 [0.004] RF 

others 24 [0.038] 602 [0.953] 4 [0.007] 592 [0.972] 2 [0.003] 586 [0.964] 

2020 redcedar 288 [0.008] 26 [0.001] 289 [0.019] 29 [0.002] 289 [0.028] 33 [0.003] MLP 

others 3 [0.005] 597 [0.986] 2 [0.003] 594 [0.976] 2 [0.003] 590 [0.965] 

redcedar 278 [0.01] 19 [0.001] 288 [0.022] 26 [0.002] 289 [0.032] 31 [0.003] RF 

others 13 [0.021] 604 [0.969] 3 [0.005] 597 [0.972] 2 [0.003] 592 [0.962] 

 

Table 1-4: A comparison of annual redcedar 

encroachment rate in the study area 

Interval 
Annual rate of increase (%) 

Lower Higher 

1990-2000 1.07 10.95 

2000-2010 0.35 3.85 

2010-2020 4.64 5.01 

1990-2020 2.26 11.19 
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Chapter 2. Juniperus virginiana (redcedar) encroachment assessment and prediction using 

Markov chain-cellular automata model in central Nebraska 

 

2.1. Introduction 

Native prairies, with range reduced by as much as 70 %, have undergone significant changes in North 

America since European settlements (Samson and Knopf, 1994; Samson et al., 2004). Besides direct loss, 

the remnant prairies are overexploited and fragmented through overgrazing, recreation activities, and 

proliferation of woody plants such as Eastern redcedar (Juniperus virginiana). For example, 8-60% of the 

original plant species were lost from the remnant prairie over a 32 to 52-year period in Wisconsin (Leach 

and Givnish, 1996). Redcedar, with a high reproductive growth, and dispersal rate, propagates even in harsh 

environmental conditions and thereby poses a serious threat to the lowlands and uplands grassland 

community (Briggs et al., 2002). A native tallgrass prairie may fully convert into a closed-canopy redcedar 

forest in as little as 40 years (Briggs et al., 2002). Redcedar encroachment thereby effectively alters and 

threatens the structure and function of the grassland ecosystem, especially in the semi-arid region vulnerable 

to climate change and human encroachment. For example, redcedar encroachment in grasslands can reduce 

groundwater recharge by two-thirds (Wine and Hendrickx, 2013), potentially altering the vast amount of 

recharge to High Plains Aquifer in the Nebraska Sand Hills (NSH). Nebraska occupies the largest portion 

of the aquifer (37% of the total area) and contributes highest recharge of up to 210 mm yr−1 in coarse-

textured soils in the NSH(Crosbie et a l2013).The substantial increase in number, density, and volume is 

due to the suitable social, environmental, and ecological conditions present throughout the vast expanse of 

grassland in Nebraska (Meneguzzo and Liknes, 2015). The redcedar spreads quickly and inhibits other 

prairie species from growing as it can photosynthesize all year long and is the first to infringe on grassland, 

farmlands, cleared pastures, and marginal lands (Meneguzzo and Liknes, 2015). Redcedar, primarily 

controlled through the fire, thrive on exclusion or reduction of fire. They outcompete and establish in areas 

with native grassland due to intensive grazing, land degradation (Brown and Archer, 1999; Wilson and 

Witkowski, 1998), increased atmospheric CO2 (Polley et al., 1997), and climate change (Briggs et al., 2002; 

Fowler and Konopik, 2007). It is therefore imperative to measure, monitor, and predict the spatial and 

temporal distribution of redcedar in the Nebraska Sand Hills.   

The change in land cover at two different periods assessed through remote sensing provides spatial and 

temporal approximation that can predict the future distribution. Markov chain and cellular automata 

(Markov-CA) model computes the transition probability from two different periods to predict the future 

distribution. The Markov chain calculates the transition probabilities from one state to another over a 

specified period, while cellular automata quantify the spatial-temporal dynamics through neighborhood 

configuration and transition potential maps. A Markov-CA model is widely used to assess the land use and 
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cover dynamics (Arsanjani et al., 2011; Coppedge et al., 2007; Guan et al., 2011; Mas et al., 2014; Pontius 

and Malanson, 2005), especially in urban areas (Guan et al., 2011; Myint and Wang, 2006), and are also 

useful in forest change analysis. Balzter (2000) used the Markov chain model to assess the vegetation 

dynamics in grassland communities. Vázquez-Quintero et al. (2016) used the Markov-CA model to assess 

the forest change in Pueblo Nuevo, Mexico and found a decreasing trend in the pine forest cover. Markov-

CA analysis by Kura & Beyene (2020) found that the woodland cover decreased due to human 

encroachment through expanding the agriculture and urban centers in southern Ethiopia. Aksoy & Kaptan 

(2020) used the Markov-CA model and showed a 17.4% increase in forest cover during the calibration and 

validation periods (1999-2019) and a 2.4% decrease during the simulation period (2019-2039). Although 

studies have used the Markov-CA model to estimate forest changes directly altered by human intervention 

such as clearing for agriculture or establishment of urban centers, few studies have used it to assess and 

simulate the encroachment with minimum and indirect human interventions (e.g., plantation). This study 

simulates the encroachment of redcedar, a dominant evergreen species occupying 90% of basal tree area in 

the Nebraska, especially into the grassland of the NSH.  

Remote sensing provides improved estimates of the species and environmental processes required by 

Markov-CA models at varied spatial and temporal scales. A species with unique spatial, spectral, or 

temporal characteristics, can be detected using remote sensing images. Satellite images (optical and 

microwave), aerial photographs, light detection and ranging (LIDAR), and unmanned aerial vehicles 

(UAV) are widely used to characterize the state of an ecosystem such as land use and cover, vegetation 

structure, phenology, and the climatic conditions such as temperature, precipitation, snow, and wind. Recent 

studies used remote sensing to identify the species (dominant in some cases) distribution (Andrew and 

Ustin, 2009; Bradley, 2014; Morisette et al., 2006; Noujdina and Ustin, 2008; Peterson, 2005; Ustin et al., 

2004; Weisberg et al., 2007), plant invasions (Alvarez-Taboada et al., 2017; Peerbhay et al., 2016) and 

potential distribution of invasive species (López and Stokes, 2016; Rocchini et al., 2015). Redcedar, one of 

the dominant species with unique spectral and temporal characteristics, was identified using the satellite 

images. Shrestha, (2021) used combination of object-based classification, MLP, and stratified random 

sampling to estimate the annual redcedar encroachment in the central Nebraska. The estimated 

encroachment rate of 2.26 -11.19% showed the spatial and temporal variation of encroachment present in 

central Nebraska. Wang et al. (2017) found redcedar increases by 8% annually using pixel and phenology-

based algorithms on Phased Array type L-band Synthetic Aperture Radar (PALSAR) and Landsat images. 

Wang et al. (2018) used Phased Array type L-band Synthetic Aperture Radar (PALSAR) and Landsat 

images and found Juniper Spp. increases by 40km2 annually. This study uses remote sensing estimates of 

redcedar cover derived by (Shrestha, 2022) with Markov-CA models to predict the future redcedar 

distribution. The specific objectives of the research are to: i) simulate the effect of different encroachment 
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rate on future redcedar distribution using the Markov-CA approach ii) assess and validate the accuracy of 

the model.  

2.2. Material and methods 

2.2.1. Study area and data 

The study area Figure 2-1 lies in central Nebraska and covers most of the Nebraska Sand Hills. The study 

area ranges in latitude from 41.09 N to 42.40 N and in longitude from 102.06 W to 99.27 W covering an 

area of 50,671 km2. The area comprising flat lands, dunes, Loess hills show little to strong topographical 

variation. Dunes present in the area consist of permeable coarse sand that promotes recharge to underlaying 

aquifer while sandy soil is present in the interdunal valleys (Barnes et al., 1984).  The area receives an 

average precipitation of between 400-500mm. The mean annual temperature is 10˚C. As per the national 

landcover database (NLCD) of 2016 (Dewitz, 2019), the study area is dominated by grassland (84%) 

followed by hay/pasture (8.7%) and wetlands (4%). It consists of 0.32% of evergreen, 0.35% mixed, and 

0.35% of deciduous forest. The study area was selected to cover the hotspots of redcedar encroachment in 

the NSH (Figure 2-1b). The southern, middle, and northern part of the study area covers less than 1 to 1-

5% of redcedar live trees distribution (Meneguzzo and Liknes, 2015), signifying differing stages of redcedar 

encroachment. In order to simulate the various prevalent encroachment rate as estimated by (Shrestha, 

2022), we used the northern, Halsey National Forest, eastern, and southern parts of study area. The Halsey 

National Forest area is managed forest and shows least change in area ( ~ 6.7 km2) between the calibration 

period (1990-2010), while the southern area shows the highest changes (231 km2). The northern area 

showed consistent presence of redcedar while eastern area shows newer establishment.   
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Figure 2-1. Study area (red box) showing redcedar live tree density (trees/acre) from 2005-(Meneguzzo and Liknes, 2015). 

Boxes show the eastern, southern, northern, and Halsey National Forest areas used for transition probability calculations. 

Landsat 5 and 8 images with 30 m spatial resolution were used to extract the redcedar coverage. We used 

winter months (November-April) surface reflectance images with less than 30% cloud cover hosted in the 

Google Earth Engine (GEE). The winter months images helped to differentiate the redcedar (green vs 

dry/yellow leaves) from other species present in the study area. Since a limited number of snow-free images 

were available and the redcedar do not change significantly within 1-2 years, we used the preceding and 

the following years to increase the number of snow and cloud-free images (i.e., a 1990 mosaic contains 

images from 1989 and 1991) and reduce the uncertainties caused by the data availability.    

The driver variables used to determine the redcedar occurrence and distribution were based on 

morphological factors rather than biological factors such as competition. A digital elevtion model (DEM) 

with 30 m resolution National Elevation Dataset (NED) was used to derive the morphological variables. 

The effect of redcedar distribution by geomorphology of an area were represented by aspect, topographic 

position index, total insolation, duration of insolation, and wind spreadness derived using the System for 

Automated Geoscientific Analyses (SAGA) (Conrad et al., 2015). The topographic position index shows 
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whether a topography is higher, lower, or flat when compared with surrounding features. Total insolation 

shows the incoming radiation determined by the elevation, slope, and aspect under clear sky conditions that 

determine whether redcedar favors high or low insolation areas. The wind spreadness index shows whether 

an area is shadowed or exposed to wind from all possible wind directions representing possible spreadness 

of redcedar seeds. Since redcedar were primarily introduced as windbreaks in the Midwest, we digitized 

windbreaks using visual interpretation of 2020 NAIP images. The distance to windbreak was derived using 

Euclidian distance. Assuming redcedar are able to thrive in semiarid region with excess to deeper soil 

moisture, we derived distance to the water table from the gSSURGO database (Soil Survey, 2021). Distance 

to stream and distance to road network were derived as the redcedar mainly occurred along the stream 

channels. The road network was included with assumption that it facilitated the windbreaks and seedling 

distribution during transportation.  

2.3. Redcedar encroachment assessment 

Shrestha et. al., (2022) used a multi-layer perceptron (MLP) with multiple hidden layers, regularization, 

and dropout ratio to identify and extract the redcedar from Landsat 5 and 8 images. Each of Landsat 8 (L8-

MLP) and Landsat 5 (L5-MLP) model were trained using pure pixels collected and visually identified after 

object-based classification of NAIP images. The classified images were stratified randomly sampled to 

estimate the redcedar cover and associated uncertainty. Redcedar Details on redcedar extraction, area 

estimates, and validation is provided in Shrestha et. al., (2022).  
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Figure 2-2: Workflow to determine and predict the redcedar distribution in the study area. 
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2.4. Markov chain cellular automata (Markov-CA) model 

Markov model provides the probability of transition of a pixel from one category to another at every time 

step, as a stochastic process. The future state of a pixel is only related to its immediately preceding state but 

not to any other previous state. As the Markov process is independent of neighboring pixels, the cellular 

automata define the spatial dynamics and allow the influence of the neighboring pixels during prediction 

(Eastman et al., 2005). Markov-CA model combines the temporal and spatial components to assess and 

predict change in the state of pixels. The Markov-CA model involves computation of i) transition 

probabilities, ii) transition potential, and, iii) spatial allocation of simulated land use/cover probabilities. 

We used the Land change modeler (LCM) module in IDRISI Terrset to analyze the redcedar encroachment 

(Eastman et al., 2005). We tested the model simulation for equal interval and unequal interval time periods. 

The simulation with equal calibration (1990-2005) and validation (2005-2020) duration showed lower 

agreement in location and quantity, therefore, was removed from the analysis. The study, therefore, uses 

the 1990-2010 to calibrate and the 2010-2020 period to validate the simulation results.  

The transition probability between two dates is analyzed using the Markov chain probability approach. The 

transition matrix for the period between 1990 (t0) and 2010 (t1) (t1 = t0 +T) is obtained by overlaying the 

two redcedar cover maps at t0 and t1. This matrix indicates the area (or the number of pixels) for each 

transition and forms the basis for projecting to a future date. We estimated transition probabilities of 

differing encroachment scenarios present in the study area. For example, the transition probabilities from 

the Halsey National Forest, which is the largest human planted forest in the United States that undergoes 

various management practices such as prescribed fire, logging, and herbicides represent the effect of 

management practices and human influence in redcedar encroachment. 

The transition potential map is produced using the MLP neural network. MLP learns the complex 

relationship between the variables. The change in the area between the two dates is the dependent variable, 

while the driver of change is the independent variable. The independent variables were determined from 

the factors that facilitate the redcedar growth and distribution. We used morphometric (elevation, aspect, 

topographic position index, total insolation, duration of insolation, and wind spreadness) and social-

environmental (distance to road, distance to windbreak, distance to stream, and depth to water table) 

variables described in section 2.1. 

The hyperparameters of MLP such as number of nodes in the hidden layer was determined by iteratively 

running the algorithm with a different number of nodes. The increase in the number of nodes greater than 

10 did not significantly increase the accuracy, therefore, we selected 10 nodes to determine the transition 

potential (Figure 2-3). The optimum learning rate was automatically determined by the algorithm while the 

sigmoid constant and momentum factors were made constant. The accuracy rate is the comparison between 
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the simulated and test data sets. Skill measure provides the difference between the measurement accuracy 

and expected accuracy by chance.  

 

Figure 2-3: Accuracy metrics for determining number of nodes of multi-layer perceptron used 

for transition potential 

2.4.1. Spatial allocation 

The future redcedar cover is simulated based on the a) redcedar cover map, b) transition potential maps, 

and c) transition area matrix using the multi-objective land allocation (MOLA) algorithm. The MOLA in 

the LCM allocates change at the highest-ranking pixels in the transition potential maps (Camacho Olmedo 

et al., 2013; Eastman and Toledano, 2018). Any conflict during change allocation in MOLA procedure is 

resolved based on a minimum-distance-to-ideal-point rule using the weighted ranks (Houet and Hubert-

Moy, 2006). A new patch is generated when the independent variables produce disjoint patches with high 

transition potential (Mas et al., 2014). The transition area matrix derived from the Markov chain analysis 

determines how much land is allocated to a class over the n-year period (Myint and Wang, 2006). At the 

end of each iteration, a new land use/cover map is generated by overlaying all results of the MOLA 

procedure. 

2.4.2. Validation of Markov-CA 

The Markov-CA model predicted redcedar cover for 2020 is validated against the classified Landsat images 

for 2020 using Kappa variations. Two maps with common categories can be compared along with the 

components of agreement (agreement due to chance, quantity, and location) and disagreement 

(disagreement due to location and quantity) in terms of quantity and location of each category. The 

component of agreement is the proportion of pixels classified correctly while the component of 

disagreement is the proportion of pixels classified incorrectly (Pontius and Spencer, 2005). Kappa 

variations measure the goodness of fit between predicted and reference maps and corrects for accuracy by 
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chance (Bishop et al., 1975). It includes traditional Kappa (Kstandard), Kappa for no information/ability (Kno), 

Kappa for location (Klocation) and Kappa for quantity (Kquantity). The information on quantity is donated 

by bold letters: n-no information, m-medium information, and p-perfect information. Information of 

location is represented by capital letters: N-no information, M-medium information and, P-perfect 

information. A detailed explanation is provided by (Pontius et al., 2004).   

𝐾𝑛𝑜 = (𝑀(𝒎)𝑁(𝒏))/(𝑃(𝒑) − 𝑁(𝒏)) 

𝐾𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = (𝑀(𝒎)𝑁(𝒏))/(𝑃(𝒎) − 𝑁(𝒎)) 

𝐾𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 = (𝑀(𝒎)𝐻(𝒎))/(𝐾(𝒎) − 𝐻(𝒎)) 

𝐾𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 = (𝑀(𝒎)𝑁(𝒏))/(𝑃(𝒑) − 𝑁(𝒎)) 

Kno indicates the overall correct proportion  relative to the expected proportion classified correctly by 

simulation while, Klocation and Kquantity  measures the validation between the actual and simulated maps based 

on location and quantity respectively (Pontius and Malanson, 2005; Pontius and Schneider, 2001). A value 

of one indicates perfect agreement and a value of zero means unsatisfactory or imperfect agreement (Pontius 

and Schneider, 2001).  

2.5. Results 

2.5.1. Image classification accuracy 

The results show high overall and user’s accuracy (Table 2-1). The producer’s accuracy is low due to 

presence of mixed pixels esp. in 1990 when the redcedar were at early stage of encroachment. The results 

also highlight the effect of class weight in stratified random estimator leading to higher omission errors. 

The producer’s accuracy increased when the classified maps were buffered by one (30 m) and two pixels 

(60 m). To balance the proper representation of the redcedar cover and the accuracy of maps, we chose the 

one pixel buffered map for further analysis. Using no buffer can underestimate redcedar coverage while a 

two-pixel buffer may overestimate the coverage.  

Table 2-1: Producer’s and user’s accuracy metrics for redcedar in 1990, 2010, and 2020 (Shrestha, 2022).  

Labels Original One Pixel Buffer Two Pixel Buffer 

1990 

Property/Strata redcedar others redcedar others redcedar others 

Overall accuracy (± 95% CI) 0.993(±0.007) 0.994(±0.006) 0.995(±0.005) 

Producer's accuracy 0.21 1.00 0.47 1.00 0.69 1.00 

User's accuracy 0.84 0.99 0.84 1.00 0.84 1.00 
 

2010 

Overall accuracy (± 95% CI) 0.996(±0.005) 0.997(±0.003) 0.996(±0.003) 

Producer's accuracy 0.64 1.00 0.89 1.00 0.92 1.00 
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User's accuracy 0.91 1.00 0.89 1.00 0.88 1.00 
 

2020 

Overall accuracy (± 95% CI) 0.994(±0.006) 0.995(±0.005) 0.993(±0.005) 

Producer's accuracy 0.63 1.00 0.85 1.00 0.90 1.00 

User's accuracy 0.92 1.00 0.91 1.00 0.90 1.00 

 

2.5.2. Markov chain – Cellular automata  

The Markov-CA model was used to derive the transition probabilities, transition potential, and change 

allocation.  

2.5.3. Redcedar transition probabilities and potentials 

The transition probabilities calculated in the north, east, south, and Halsey Forest areas show differing 

transition probabilities for 2020, 2050, and 2100 (Table 2-2). The northern and southern areas show higher 

persistence in redcedar cover than the eastern and Halsey National Forest areas. The transition probabilities 

of others to redcedar are high in the eastern and Halsey National Forest area leading to a consistent reduction 

in redcedar area in future simulation years. The difference in transition probabilities of redcedar to others 

and others to redcedar is less in northern and southern areas. A balanced redcedar transition probabilities 

(redcedar to others Vs others to redcedar) and area estimate closer to the stratified random estimate (Table 

2), we assume that the northern area transition probabilities provide best estimate of redcedar encroachment.     

Table 2-2: Transition probabilities between redcedar and others class in eastern, Halsey 

National Forest, northern, and southern areas in 2020, 2050, and 2100. redcedar cover (area) 

for 2020 is calculated in km2 in equal area projection system. 

Landcover 

Simulation year 

2020 2050 2100 

Eastern Area 

redcedar others redcedar others redcedar others 

redcedar 0.9037 0.0963 0.6721 0.3279 0.4291 0.5709 

others 0.0136 0.9864 0.0461 0.9539 0.0803 0.9197 

Area (km2) 1676.87 56451.25 ־ ־ ־ ־ 
 

Halsey National Forest 

redcedar 0.8985 0.1015 0.6659 0.3341 0.4463 0.5537 

others 0.0317 0.9683 0.1044 0.8956 0.173 0.827 

Area (km2) 2706.06 55422.05 ־ ־ ־ ־ 
 

Northern  

redcedar 0.9718 0.0282 0.894 0.106 0.7849 0.2151 
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others 0.014 0.986 0.0527 0.9473 0.1069 0.8931 

Area (km2) 1767.51 56360.61 ־ ־ ־ ־ 
 

Southern 

redcedar 0.959 0.041 0.8535 0.1465 0.7253 0.2747 

others 0.0353 0.9647 0.1263 0.8737 0.2368 0.7632 

Area (km2) 2972.09 55156.03 ־ ־ ־ ־ 
 

Reference (Stratified sampling) 

Area (km2) 1521.47 67228.66 ־ ־ ־ ־ 

CI 316.09 316.09 ־ ־ ־ ־ 

 

We used ten independent variables to derive the transition potential map. The most influential variables are 

the duration of insolation followed by depth to the water table and total insolation. The least influential 

variables are distance to windbreak and distance roads. The MLP used to determine the transition potential 

although learns complex, non-linear association and interaction among variables, the most influential 

variables may not relate to expectations in the real world. For example (Table 2-3), the distance to 

windbreak is the least influential while it could be one of the important variables in the redcedar invasion.  

Table 2-3: Sensitivity analysis of independent variables for transition potential calculation.  

Variables Model Accuracy (%) Skill measure Influence order 

With all variables With all variables 86.69 0.73 N/A 

Aspect constant 86.62 0.73 7 

Wind exposition constant 84.27 0.69 4 

Topographic position index  constant 86.41 0.73 6 

Total insolation constant 82.46 0.65 3 

Duration of insolation constant 81.35 0.63 1 (most influential) 

Depth to water table constant 81.70 0.63 2 

Distance to road constant 86.67 0.73 8 

Distance to stream constant 85.86 0.72 5 

Distance to windbreak constant 86.80 0.74 9 (least influential) 

 

2.5.4. Model validation 

The simulated redcedar cover for 2020 was compared with the classified redcedar (reference) cover from 

2020.  The Kappa variation (Table 2-4) show that the reference and simulated maps match with each other 
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better than chance and can be used to simulate the future distribution of redcedar. Table 4 compares the 

agreement and disagreement between reference and simulated maps at the eastern, northern, southern, and 

Halsey National Forest areas. The northern and eastern area showed similar agreement due to quantity, 

location and Kapps variation than the southern and Halsey National Forest. Some statistics are better in 

northern area such as disagreement due to grid cell, Kstandard, Klocation and KlocationStrata.  The 

northern area showed total disagreement less than 3% of which disagreement due to quantity is less than 

1% and disagreement due to grid cell is less than 2%.  

Table 2-4: Validation statistics for reference and simulated redcedar cover for 2020. 

The Kappa variation (Kno, Klocation, KlocationStrata, and Kstandard) shows the 

simulation is better than chance based on location, quantity, and traditional Kappa 

statistics. 

Category Information 

North South East Halsey 

Agreement due to chance 0.50 0.50 0.50 0.50 

Agreement due to quantity 0.45 0.43 0.45 0.43 

Agreement Strata 0.00 0.00 0.00 0.00 

Agreement Gridcell 0.03 0.03 0.03 0.03 

Disagree Gridcell 0.01 0.01 0.01 0.01 

Disagreement Strata  0. 00 0. 00 0. 00 0. 00 

Disagreement due to quantity 0.01 0.03 0.01 0.02 

Kno 0.96 0.92 0.96 0.93 

Klocation 0.70 0.76 0.66 0.71 

KlocationStrata 0.70 0.76 0.66 0.71 

Kstandard 0.59 0.45 0.57 0.45 

 

The validation image  (Figure 2-4 a, b, c) shows that most of the areas match each other. Areas that are 

altered due to human intervention (e.g., forest fire),  are missed, or underrepresented in the simulation. Any 

landscape changed after the calibration period (1990-2010), is not properly represented. For example 

(Figure 2-4 c -north west part), a forest fire in 2012 in the northern part of the study area is over-predicted 

in the simulated redcedar cover. 
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Figure 2-4: Validation map using northern transition probabilities between the reference and simulated 2020 redcedar cover for 

a. Halsey National Forest; b. southern and; c. northern area. 

2.5.5. Predicted redcedar cover  

The redcedar cover is predicted for 2050 and 2100 using 2020 as a base map, transition probability matrix, 

and transition potential maps. The predicted redcedar cover shows temporal patterns in the redcedar 

distribution. The difference in transition probabilities has resulted in various scenarios of redcedar 

encroachment. The eastern area transition probabilities resulted in the lowest increase in redcedar area while 

the southern area transition probabilities resulted in the highest increase (Figure 2-5). The redcedar area 

calculated using transition probabilities of Halsey National Forest resulted in high increase in redcedar than 

anticipated. The transition probabilities of northern area predicted redcedar cover increased by more than 

two-fold (3899 km2) in 2050 and four-fold (6887 km2) in 2100 when compared with an area of 1767 km2 

in 2020.  
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Figure 2-5: Simulated redcedar area using transition probabilities calculated from the eastern, 

Halsey National Forest, Southern, and Northern area. 

The results of the eastern, Halsey National Forest, northern and southern areas transition probabilities also 

showed a substantial spatial variation in encroachment patterns. The Halsey National Forest decayed in all 

of the simulation, while the northern and southern area showed increase in redcedar density and cover, esp. 

using southern area transition probabilities (Figure 2-9). Eastern area transition probabilities resulted in 

least dense redcedar distribution (Figure 2-7) compared to Halsey National Forest (Figure 2-8) and southern 

area (Figure 2-9). While considering the northern area transition probabilities more realistic, the Figure 2-6 

shows increase in redcedar cover and density in the northern (Figure 2-6 d, e, f) and southern (Figure 2-6 

g, h, i) parts of the study area while the Halsey National Forest shows a decrease and ultimately vanishing 

of redcedar cover (Figure 2-6 a, b, c) and (Figure 2-7, Figure 2-8, Figure 2-9). The potential reason could 

be the transition potential map showing the Halsey National Forest unsuitable for redcedar as determined 

by the driving factors estimated using the MLP method. The transition probabilities using Halsey National 

Forest showed the least persistence and thus showed anticipated decay over the simulation in a longer time. 

Although Halsey National Forest decayed over time, the surrounding area showed increased redcedar cover 

or showed newer encroachment areas. While the encroachment was confined within the boundaries defined 

by topography in the northern and southern areas. The results could be used as potential redcedar 

distribution with highest (southern area), lowest (eastern area), and moderate (northern area) encroachment 

scenarios.  
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Figure 2-6: A comparison between the predicted redcedar for 2000, 2050, and 2100. redcedar coverage decreased in the Halsey 

National Forest area (a-c); increased in northern (d-f) and southern (g-i) part of the study area. 

2.6. Discussion 

The accuracy of the simulated redcedar encroachment depends entirely on the accuracy of the input maps. 

Although winter images were used to facilitate the differentiation of evergreen trees from mixed forests and 

wetlands with vegetation, the overlapping spectral signature (e.g., the presence of redcedar as understory 

vegetation in the mixed forest) resulted in an error of omission and commission. The use of one-pixel 

buffered maps in analysis reduced effect of omission errors but may include effect of increasing commission 

error. The representation of redcedar, however, is limited due to the spatial resolution of the Landsat images. 

With radiometric and geometric errors, and associated sample-scene phase, a 30 m pixel resolution does 

not consistently detect and resolve at least one-half the diameter of the smallest object of interest as 

described in the literature (Cowen et al., 1995; Myint et al., 2011). With an average tree canopy diameter 

of 1.2-12 m (Bechtold, 2003), a minimum of three to twenty trees must be present for detection and 

delineation of redcedar. Therefore, the redcedar cover might be underrepresented in areas with the newer 

establishment. Although the images are unable to represent early-stage encroachment, they capture the 
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moderate and significant encroachment that has higher environmental effects. A difference of 20 years 

(1990-2010) should compensate for some of the undetected areas.  

The Markov-CA model is a simple and effective approach to assessing and predicting the landcover change 

and encroachment analysis. The higher Kappa coefficient suggests that the model can capture the variation 

better than chance and can be used for further analysis. The output from the Markov-CA model is governed 

by the transition probabilities and transition potentials. To ensure natural encroachment, we calculated 

transition probabilities using a subset of locations with different redcedar encroachment. The eastern area 

resulted in smallest increase while the southern area showed largest increase in redcedar encroachment. The 

approach provides multiple encroachment scenarios that can help decision makers on formulating 

management strategies. It also provides input maps for various simulation models such as hydrological 

modelling to evaluate the effect of encroachment in discharge, groundwater recharge, and 

evapotranspiration. The results show that the output of the simulation is sensitive to the base images used 

to derive the transition probabilities and area matrices (Sinha and Kumar, 2013). The transition potentials, 

however, were calculated using the social-environmental (distance to road, distance to windbreak, distance 

to stream, and depth to water table) and morphometric (elevation, aspect, topographic position index, total 

insolation, duration of insolation, and wind spreadness) variables. The soil and its associated properties 

were excluded as they do not vary much in the NSH.  

The difference in validation between the simulated and reference redcedar cover for 2020 could be 

inherently associated with the limitation of the Markov chain approach. Other models such as species 

distribution model, machine learning, could possibly be used albeit with their own limitations and strengths. 

The Markov chain assumes the change process to be stationary over time while in reality the change is 

governed by the dynamic interaction of socio-economic and biophysical factors and is therefore non-

stationary (Eastman et al., 2005; Pérez-Vega et al., 2012; Sinha and Kumar, 2013). As such the transition 

probabilities vary over time and carry the non-stationarity property in the prediction leading to a mismatch 

with the reference redcedar cover. Similarly, the dependence of the Markov chain on the immediately 

previous state rather than on the sequence of states might underestimate the importance of the historical 

event in change analysis and prediction (Eastman et al., 2005; Sinha and Kumar, 2013; Staver et al., 2011).  

Some differences in the result of simulated redcedar cover could be due to the transition between categories 

at a smaller proportion of the study area (Pontius and Petrova, 2010) and difference in growth rate or 

transition between two time periods that results in systematic errors (Camacho Olmedo et al., 2015; Pontius 

and Neeti, 2010). A transition rate between 1990-2010 might be different than the transition between 2010-

2020. The results show that areas with significant land cover change due to human intervention such as fire, 

conversion of land to agriculture, planting redcedar for wind breaks, or other developmental practices, are 

not well represented in the simulated redcedar cover. Implementation of human intervention in the model 
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will help to address such problems. The use of prescribed burns is increasing in the Great Plains with 

formulations of burn cooperative that allows or circumvents state policies that forbid burns when wildfire 

danger is increased (Twidwell et al., 2013).  

The simulated map of future redcedar distribution provides the spatial and temporal dimension of 

encroachment that enables decision-makers to formulate better-informed management plans and practices. 

With considerable changes in the ecosystem function and services in the prairies due to encroachment, the 

scenarios also provide an opportunity to localize and regulate redcedar distribution. Although the model 

used socio-environmental and morphometric variables, incorporation of edaphic and other change-inducing 

variables (e.g., social and economic) may improve prediction.  

2.7. Conclusions 

The study shows that the redcedar encroachment can be assessed using the multi-layer perceptron using 

Landsat images. The high accuracy of the extracted redcedar shows that the method provides reliable 

estimates of redcedar cover at a regional scale. Although the images do not provide sufficient resolution to 

map early-stage encroachment, the results capture the significant encroachment. The Markov chain cellular 

automata model provides a simple and effective way to incorporate transition between the redcedar and 

others land cover and predict the future distribution of the redcedar. The subset of study area (eastern, 

northern, Halsey National Forest, and southern) showed differing transition probabilities that resulted in 

variation in spatial and temporal patterns of redcedar encroachment. The southern area transition 

probabilities resulted in the highest increase in encroachment while the eastern area transition probabilities 

showed lowest encroachment. The northern area model results showed that redcedar cover increased by 

four-fold in 2100 compared to 2020. The result can be used to simulate the effect of redcedar encroachment 

in different biophysical modeling environments that helps in the formulation of an effective management 

plan.  
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2.8. Supplementary materials 

 

 

Figure 2-7: Simulated redcedar cover for 2020, 2050, and 2100 using the eastern area transition probabilities 
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Figure 2-8: Simulated redcedar cover for 2020, 2050, and 2100 using the Halsey National Forest area transition probabilities.  

 

 
Figure 2-9: Simulated redcedar cover for 2020, 2050, and 2100 using the southern area transition probabilities. 
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Chapter 3. Impact of Eastern Redcedar encroachment on water resources in the Nebraska 

Sandhills 

3.1. Introduction 

Globally, grasslands are shifting rapidly to woody-plant dominance (Anadón et al., 2014b; Eldridge et 

al., 2011; Zou et al., 2014). This phenomenon is known as woody-plant encroachment and is driving 

important changes in hydrological function in biodiversity and productivity, biophysical changes, and 

related social costs (Huxman et al., 2005; Schreiner-McGraw et al., 2020). 

One of the most notorious species encroaching into grasslands in North America is Eastern Redcedar 

(ERC) (Engle et al., 2008; Fogarty et al., 2020; Twidwell et al., 2013). ERC (Juniperus Virginiana) is native 

to North America but historically limited in abundance due to fire (Axmann and Knapp, 1993). ERC is 

considered the most widely distributed conifer species in North America (Ferguson et al., 1968). The range 

of ERC spans from eastern North America to southeastern parts of Canada down to the southern parts of 

the United States (U.S.) at the Gulf of Mexico and it expands towards the eastern Great Plains (Gilman and 

Watson, 1993; Oklahoma Conservation Commission, 2008). Meneguzzo and Liknes (2015) found that ERC 

has increased range from the eastern coasts of the U.S. to the Midwest states reaching as far as western 

Nebraska. They concluded that the ERC geographic distribution in the central U.S. is considered 

widespread, with the most significant increases occurring in Nebraska and Missouri during the early 2000s.  

Several studies quantified the ERC encroachment in Nebraska, including the Nebraska Sandhills 

(NSH), the principle recharge area for the High Plains Aquifer (Adane et al., 2017; Adane and Gates, 2014; 

Awada et al., 2013). According to Walker and Hoback (2007), the rate of ERC encroachment was 2% 

annually, and in the past 30 years, the coverage has increased to 30% in the Loess Canyons in southeastern 

Lincoln County in Nebraska. In the last 20 years, ERC has noticeably increased from 10,000 to 300,000 

trees (30 times) in the NSH  (Nebraska Forest Service, 2016). 

The impacts of ERC encroachment in Nebraska have been evaluated by scientists since the beginning 

of the 20th century. According to Bielski et al., (2017)http://cedarliteracy.unl.edu/, the impact of ERC on 

soil was documented in the 1940s, the impact on livestock production in the 1970s, and recently the impact 

on society. The impacts can be categorized into social costs, changes in biodiversity and productivity and 

biophysical changes. ERC control costs for public schools (or land in related trusts), a social cost, have 

increased by $250,000 since 2006 and livestock production has decreased by 75% in areas with substantial 

ERC encroachment on grasslands. Wildfire risk has shifted from frequent grass-driven fires to infrequent 

juniper driven crown fires with longer flames (Bielski et al., 2017)http://cedarliteracy.unl.edu/. 

Biodiversity and productivity impacted different species. For example, grassland birds and prairie chickens 

have been replaced by woodland/shrubland birds in areas with more than 10% encroachment. ERC canopy 

allows very few plants to grow underneath. The richness of grassland species declined by 88% in ERC 

http://cedarliteracy.unl.edu/
http://cedarliteracy.unl.edu/
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encroached areas. The abundance of beetle species is reduced in a similar manner as small mammal species, 

and most of these species are no longer present in areas encroached by more than 30%. Finally, the 

biophysical impacts include carbon storage shifts from beneath grasslands (96%) to above ground in ERC 

(52%). Due to this shift to aboveground storage, there is an increased potential for rapid losses of carbon 

due to disturbance factors such as drought, wildfire, disease, or insect outbreaks in the encroached areas 

(Bielski et al., 2017). 

Multiple studies have evaluated the impacts of ERC on water resources. To understand the extent of 

ERC encroachment and its implications to evapotranspiration (ET), surface runoff and infiltration, Zou et 

al. (2018) reviewed the impacts of ERC proliferation on water resources in the U.S. Great Plains. The study 

concluded that watersheds with ERC encroachment have increased ET and precipitation loss to canopy 

interception. This leads to soil moisture depletion and reductions in surface runoff and deep recharge. A 

study by Wine and Hendrickx (2013) investigated the bio-hydrologic effects of ERC encroachment into 

Oklahoma grassland. The study found that the average ET from grassland and ERC was 787 mm (95% of 

precipitation) and 798 mm (97% of precipitation), respectively. Another study by Zou et al. (2010) 

examined how ERC encroachment would impact the water cycle in Oklahoma rangelands. They concluded 

that evaporation, transpiration, and subsurface flow increase while water storage, groundwater recharge, 

and baseflow decrease because of the encroachment. A study by Adane et al. (2018) investigated the 

impacts of grassland conversion to dense pine forest on the water budget in the NSH; however, past studies 

did not evaluate the impacts of ERC encroachment on the water resources in the NSH.  

The impacts of ERC encroachment on water resources in Nebraska, specifically in the NSH, are significant 

for multiple reasons. First, the Sandhills is one of the last remaining intact prairie regions in the world and 

has only recently begun to experience woody encroachment (Fogarty et al., 2020). Second, landscape 

transformation (from rangeland to ERC) is believed to reduce groundwater recharge and discharge to the 

stream system, however, the extent of ERC encroachment and its effect on the hydrologic functioning of 

NSH’s hydrology are still unknown. Lastly, the Loup River, which drains the NSH, is a major tributary to 

the Platte River, a vital waterway for Nebraska. Understanding the hydrological impacts of ERC 

encroachment will play an important role in the sustainability of the High Plains Aquifer and the Nebraska 

rivers and ecosystems. Studies in the past have evaluated different characteristics of this area related to 

hydrology, geology, agriculture, and climate. For example, Gosselin et al. (2006) performed a study on the 

hydrological effects and groundwater fluctuations in NSH. The study employed simple water balance 

approach estimating ET from water levels. They found that groundwater level fluctuations in the wet 

meadow are strongly linked to the seasonal growth patterns of vegetation, but it was limited to areas where 

the groundwater table was within the rooting zone. It was found that the average ET ranged between 5-6 

mm/day in mid-growing season and 2-3 mm/day during the period of senescence.  
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In this study, we use the Soil and Water Assessment Tool (SWAT) to model the impacts of ERC 

encroachment on recharge and discharge at the watershed scale within the NSH. Few studies have applied 

the SWAT model to evaluate the impacts of ERC on water resources (Qiao et al., 2015; Starks and Moriasi, 

2017). Starks and Moriasi (2017) conducted a modeling study in the central reach of the North Canadian 

River basin in central Oklahoma. The model was used to simulate an encroachment of ERC into grasslands 

by 10% increments and assess its impacts on the stream discharge. They found that if rangeland was 

replaced by ERC completely (100% encroachment), a reduction in stream discharge could reach 112% of 

the current municipal water demand and 89% of the projected 2060 demand. This was supported by Zou et 

al. (2018), where they assessed the impacts of ERC proliferation on water resources in the Great Plains, 

U.S. using the SWAT model. They found that a complete conversion from rangeland to ERC would result 

in a reduction in streamflow throughout the year between 20 to 40% depending on the aridity of the climate. 

None of these studies evaluated the impact of ERC encroachment on water quality, a recommended topic 

for future research identified by Zou et al (2018). The objectives of this study were to evaluate the (1) 

impacts of the current and future ERC encroachments on the recharge and discharge in the NSH and (2) 

implications of ERC encroachment on the water quantity and quality in the Platte River, a vital river in 

Nebraska. 

3.2. Methods 

3.2.1. Study Area 

The Nebraska Sandhills (NSH) is an area of vegetated sand dunes located in central to western Nebraska 

with a total area of approximately 50,000 km2 (Ahlbrandt and Fryberger, 1980; Smith, 1965; Sweeney and 

Loope, 2001). It consists mainly of interdunal basins, connected with an unconfined aquifer, and hosts 

around 4,700 lakes and over 2,000 km2 of wetlands (Dappen et al., 2007). The climate in the NSH is 

semiarid, with annual precipitation ranging from 406 mm (west) to 610 mm (east) and an average 

temperature of 8.9oC (Ahlbrandt and Fryberger, 1980). Most of the land cover (93% of total watershed 

area) is herbaceous (Pasture), 4.2% as wetlands, 1% as lakes, 0.7% urban land, 0.44 red cedar, and 0.23 

corn fields based on the NLCD 2016. (Dewitz, 2019). 

With a maximum saturated thickness of about 300 m in western Nebraska (Miller and Appel, 1997), the 

NSH overlies the majority of unconfined groundwater storage within the High Plains Aquifer. Historically 

there has been little evidence of reductions in groundwater storage beneath the NSH (Haacker et al., 2016a; 

V.L. McGuire, 2017; Peterson et al., 2016; Scanlon et al., 2012a), but the shallow water table in much of 

the NSH increases vulnerability to ERC encroachment and climate change (Adane et al., 2019b; Burbach 

and Joeckel, 2006; Loope and Swinehart, 2000; Suttie et al., 2005; Zou et al., 2018). 

The Upper Middle Loup (UML) watershed is in the center of the NSH with an area of 4,950 km2 (Figure 

3-1). The study area expands over parts of Grant, Hooker, Thomas, Blaine, Sheridan, and Cherry counties. 
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The UML watershed (as part of the NSH) is highly baseflow-dominated (95% baseflow) (Szilagyi et al., 

2011). Figure 3-2a illustrates the water depth in the NSH, estimated as the difference between the 30-m 

digital elevation model (DEM) (USGS, 1999) and spring 1995 water table data. As shown in Figure 3-2b, 

the water depths near the streams, where ERC usually persist, is 0-4 m which is within the range of ERC 

roots and would probably be impacted with ERC encroachments, especially where water depths are 

shallow. According to Anderson (2003), ERC roots can penetrate 7.5 m which increases the access to the 

water table to more than 17%.  Figure 3-2c shows conceptually how ERC can have access to an unconfined 

aquifer and can limit seepage to the lake and streams. Though ET would be expected to be higher in areas 

where ERC roots can penentrate the water table, encroachment is not limited to those areas. Briggs et al., 

(2002) found that a tallgrass praire can be converted to closed-canopy ERC forest in as little as 40 years. 

 

Figure 3-1: Location of the Upper Middle Loup watershed compared with Nebraska 

Sandhills and Nebraska state map. 

 

Figure 3-2: (a) The depth of water (m) in the Nebraska Sand Hills (source: Rossman et 

al., 2014) and (b) the Upper Middle Loup watershed, (c) schematic drawing of Eastern 

Redcedar root penetration into the vadose zone and water table. 

a b 

c 

17.2%        12.2%            19.9%          19.3               15.7%          9.6%            4.9%            
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3.2.2. Eastern Redcedar encroachment 

Starks and Moriasi (2017) evaluated ERC encroachment impacts on stream discharges based on three 

scenarios (one to simulate the baseline encroachment, a second to simulate encroachment removal ERC-

to-grassland, and a third scenario grassland-to-ERC by 10% increments up to 100%). However, the spatial 

distribution and expansion of ERC were not considered in conjunction with the 10% incremental changes. 

In this study, the impact of ERC on water resources in the UML watershed were evaluated using 

encroachment scenarios that incorporated different spatial distributions and expansion. Encroachment 

scenarios were created based on existing ERC cover and spatial variation of encroachment representative 

of the present and potential future environmental conditions. The baseline scenario (present condition, 

Figure 3-3a) had less than 1% encroachment in the watershed area. The additional encroachment scenarios, 

developed from baseline scenario using neighborhood approach, represent ERC cover at 11.9%, 16.1%, 

28.0%, 40.6%, 57.5%, 72.5%, and 100 % of the landuse occupied by the rangeland (Pasture). In these 

scenarios, only rangeland was encroached while other land uses (e.g., lakes, wetlands, urban) remained 

constant. It was assumed that all these scenarios happens instantaneuously without development. However, 

it is worth mentionig here that the ecology of the red cedar can be affeted by different factors including the 

precipitation, levels of CO2 in the atmosphere, accessbility to water, but quantifying these factors are out 

of the scope of this paper. The adopted scenarios, hypothitically, assumed the encraochment will occure to 

test its impacts on the water resources. 

The baseline scenario was created by combining the evergreen and mixed forest land cover classes from 

National Land Cover Database (NLCD) 2016 where the landuse percentage are 93% of total watershed 

area) is herbaceous (Pasture), 4.2% as wetlands, 1% as lakes, 0.7% urban land, 0.44 red cedar, and 0.23 

corn fields. The literature showed that evergreen eastern redcedar can encraoch into other forest types also 

the root system of evergreen can grow up to 7m deep into ground exceeding other species in the mixed 

lands according to US Forest Service Database (Anderson D., 2003), which means a higher level of impact 

on the water resource is expected from the red cedar in the mixed areas. Taking this into consideration the 

impact, combining the two land covers into ony evergreen not only serves the purpose of considering the 

higher impact but it help reduce the number of HRUs in the model itself. The baseline map was classified 

as a binary image, the presence of ERC is represented with a value of 1 while absence with 0. The binary 

image was passed through a moving window (3x3 m to 7x7 m) with a dilate morphological filter (Haralick 

et al., 1987b). When a binary image passes through the process of dilation, the area with value of 0 (non-

redcedar/no encraochment ) is replaced by 1 (ERC) represeting an encraochment occuring. The process was 

iterated to create ERC encroachment percentages of 11.9%, 16.1%, 28.0%, 40.6%, 57.5%, 72.5% and 

100%. 
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Figure 3-3: Eastern Redcedar (ERC), represented by dark green color, encroachment scenarios (a) 

baseline scenario <1%, (b) 11.9% (c) 16.1% (d) 28.0% (e) 40.6% (f) 57.5% and (g) 72.5% and (h) 

100% 

3.2.3. SWAT Model Setup 

ArcSWAT version 2012.10._5.21 was used to set up the SWAT model using a 30 m DEM, NLCD land 

cover, and STATSGO soil layer. Table 3-1shows the different land cover, soil types, and slope and their 

percentage within the UML. Different combinations of land use, soil type, and slope produce unique 

hydrological response units (HRUs). Initially a total of 1439 HRUs and 37 subbasins were generated as 

shown in Figure 3-4. However, a segmentation of the Land use was performed to improve the representation 

of the encroachment scenarios as described in the next section of this paper. 

Table 3-1: Percentage of each land use, soil type and slope for the Middle Loup 

Watershed used in the SWAT model. 

LULC Area % Soil Type Area % Slope Area % 

Water 1.07% NEW* 0.44% 0-2% 19.44% 

Wetlands 4.27% NE081 1.94% 2-4% 16.65% 

b
.
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.
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Urban land 0.68% NE133 40.61% 4-6% 14.86% 

Forest 0.19% NE134 17.08% 6-10% 24.74% 

Pasture 93.56% NE135 6.00% >10% 24.31% 

Corn 0.23% NE137 33.16% - - 

- - NE146 0.77% - - 

* SWAT defined NEW soil type where soil data is missing. The model creates 

a new soil profile, and the user should populate the parameters. This is usually 

created where waterbodies cover the soil map, and no information is available 

about the bed soil. 

 

 

Figure 3-4: Upper Middle Loup watershed with SWAT model 37 subbasins and the 

ponds, wetlands and streams. 

Daily rainfall and temperature data from 1981-2019 were obtained from the PRISM  model (Parameter-

elevation Relationships on Independent Slopes Model) (Manatsa et al., 2008) and downloaded through the 

PRISM Explorer (PRISM Climate Group, 2004). Although the water bodies within the model (wetlands 

and ponds) represent only 5% of the total area, they are concentrated within the upstream subbasins and are 

discharge regions (Rossman et al., 2019). Therefore, special focus was given to populate the wetland and 

pond parameters within the SWAT model, as shown in Table 3-2. The values of the parameters were mainly 

related to the area of each pond/wetland, which was calculated from the NLCD land use map. The 

estimation of the depth and volume of the ponds/wetlands parameters were based on the method mentioned 

by Evenson et al. (2018, 2016, 2015) and Muhammad et al. (2019). Additionally, the actual stream was 

defined based on aerial images (U.S. Geological Survey, 2020) to ensure better representation.  

Table 3-2: Ponds and Wetlands SWAT Model Parameters 

Pond Parameters Parameters Definition Value 
Wetland 

Parameters 
Parameter Definition Value 

PND_FR 
Fraction of subbasin area 

that drains into ponds 
Varies WET_FR 

Fraction of subbasin area 

that drains into wetlands 
Varies 
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PND_PSA 

Ponds Surface area when 

filled to principal 

spillway (ha) 

Varies WET_NSA 

Wetlands Surface area 

when filled to normal 

water level (ha) 

Varies 

PND_PVOL 

water Vol. stored when 

filled to principal 

spillway (m3) 

Varies WET_NVOL 

water Vol. stored when 

filled to normal water 

level (m3) 

Varies 

PND_ESA 

Ponds Surface area when 

filled to emergency 

spillway (ha) 

Varies WET_MXSA 

Wetlands Surface area 

when filled to maximum 

water level (ha) 

Varies 

PND_EVOL 

Water Vol. stored when 

filled to emergency 

spillway (m3) 

Varies WET_MXVOL 

Water Vol. stored when 

filled to maximum water 

level (m3) 

Varies 

PND_VOL 
Initial water Vol. in 

ponds (m3) 
Varies WET_VOL 

Initial water Vol. in 

wetlands (m3) 
Varies 

PND_K 

Hydraulic Conductivity 

of ponds bottom 

(mm/hr) 

0.5 WET_K 
Hydraulic Conductivity of 

wetlands bottom (mm/hr) 
0.5 

PNDEVCOEFF 
Ponds Evaporation 

Coefficient 
0.1 WETEVCOEFF 

Wetlands Evaporation 

Coefficient 
0.1 

 

3.2.4. Modifying SWAT HRUs to perform proper Eastern Redcedar Encroachment Simulations  

The discharge, ET, and recharge simulated by the calibrated SWAT model constituted the baseline scenario. 

Each ERC encroachment scenario was compared to the baseline. The encroachment percentages indicate 

the percentage of pasture that was converted to ERC in the calibrated SWAT model. Thus, the 100% 

encroachment scenario means that all HRUs that are classified as pasture are converted to ERC, and the 

relevant parameters in the SWAT model (i.e., CN, Max depth root, Canopy Maximum Interception 

Capacity CANMX) were changed to reflect the ERC parameters. 

Due to the conceptual setup of the SWAT model, HRUs are a non-spatial feature. This means that any HRU 

with its unique features (i.e., slope, land use, soil type) can be located anywhere within the subbasin and 

the suer cannot select a specific HRUs in a specific unique location. Thus, it is impossible to reflect the 

generated encroachment maps from satellite images to the current model. This limits the opportunity to 

target a specific HRU without changing every HRU that holds the same features. Starks and Moriasi, (2017) 

performed a were split of HRU was performed where the sum of the area and the HRUs developed from 

the split equal the area of the original HRUs since in SWAT, HRUs are not spatially explicit. However, this 

does not allow to pick the location where the encroachment will possibly occur (i.e. near stream or around 

lakes and wetlands) instead it just select a percentage of HRU equivalent to the expected encroached area. 

To overcome the spatial limitation, a modification to the Land use map where pasture is located was 

performed. The original NLCD 2016 LULC map was divided into subsets within the original pasture land 

uses where each land use map represent a level of encroachment as shown in Figure 3-3. These maps were 
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combined into one land use map but the pasture land use was segmented into PA10, PA15, PA25, PA40, 

PA55 and PA70. The new names represent the same encroachment scenarios 11.9%, 16.1%, 28%, 40.6%, 

57.5% and 72.5% respectively. 

Only the class name was changed keeping other parameters of pasture as the original pasture class. This 

segmentation of pasture resulted in an increased number of associated HRU files from 1493 to 3342. The 

segmentation was conducted by overlaying the different land use maps representing the different 

encroachment scenarios. These maps were generated using satellite image analysis. After the model was 

calibrated the encroachment scenarios were simulated by selecting the related pasture class (thus selecting 

only corresponding HRU files where they should spatially be located). This is the first paper to use this 

approach. 

3.2.5. SWAT model calibration approach 

Strauch; and Linard;, (2009) performed streamflow simulations and percolation estimates using SWAT 

model for selected basins in the North-Central Nebraska for the period from 1940 to 2005. It simulated 

different subbasins including Elkhorn River Basin, Shell Creek Basin, Long Pine Creek Basin, Plum Creek 

Basin, and Loup River Basin. 

The Loup River Basin is a watershed of around 38,850 km2 with a dominant land uses of pasture/rangeland 

with agricultural land use along the river bottoms predominated by corn and soybeans. The mean annual 

precipitation in the Loup River Basin is 541 mm, the mean annual ET approximately 457 mm in and mean 

annual runoff is approximately 60.69 mm. 

The study reported the statistical validation results for the performance of SWAT simulating streamflow 

for th Loup River of -1.13, 1.46 and, 21.11 for NSE, RSR, and PBIAS respectively. For a satisfactory results 

of NSE>0.5; RSR < 0.7; and PBIAS <+/-25, the study compared simulated and recorded streamflow values. 

To determine the ability of the watershed to estimate hydrological components the reported compared the 

cumulative basin-level water balance to the recorded and/or reported values. For the Loup River the 

following table show the comparison. 

The water balance from the model was 185.4 mm compared to 48.24 mm from the recorded and reported 

values giving an difference of 26% of recorded over simulated balance. 

The large water imbalance in the Loup River Basin model was caused by the large differences between the 

reported and simulated ET values. In this paper the improvement of ET and runoff simulations from SWAT 

model would improve the water balance estimation, thus the focus of calibration will be directed toward 

matching simulated ET with recorded ET on a monthly basis taking into account achieving acceptable 

percolation values. By keeping both ET and percolation within the range the uncertainty expected from 

SWAT model missing the stream discharge peaks could be alleviated. However, the modelling and 
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calibration approach will be applied towards the Upper Middle Loup (4,950 km2 sub-watershed part of the 

entire 38,850 km2 Loup River Basin Watershed) for the period between 2000-2019. 

To calibrate the model the aquifer characteristics were evaluated, including the soil subsurface 

compositions, hydraulic conductivity, specific yield, lag time, and groundwater depths (Pettijohn and Chen, 

1962; Rossman et al., 2014). To simulate the travel of water throughout the watershed, the lag time was 

applied to the SWAT model based on the values extracted from Rossman’s groundwater model (Rossman 

et al., 2019). Additionally, Lag times ranged from 39 to 4500 days and the soil hydraulic conductivity and 

aquifer properties were applied based on USGS sub-soil map (Pettijohn and Chen, 1962). 

Once the SWAT model was created, it was calibrated for evapotranspiration (ET), discharge, and recharge. 

Most modeling studies only calibrate discharge (Bailey et al., 2016; Dhami et al., 2018; Starks and Moriasi, 

2017), and very few calibrate more than one hydrologic component (Jin and Jin, 2020). Thus, calibrating 

each component of the hydrologic cycle reduces the uncertainty in the results. 

3.2.6. Discharge calibration approach: 

The daily discharge data from the only USGS stream gauge located at the watershed outlet were 

downloaded for period of January 2000 to December 2019. With the high baseflow index, the variability in 

discharge was very low. The average streamflow was 13.4 m3s-1 with a daily maximum and minimum of 

19.7 and 10.3 m3s-1, respectively. 98% of the monthly discharge readings were between 11 and 17 m3s-1. 

The maximum discharge occurs in March, April, and May, ranging from 14-14.5 m3s-1, while the lowest 

flows occur from July to September ranging between 12.5-13 m3s-1. The calibration period is from the year 

2000 to 2010 and the validation period is from 2011 to 2020. 

3.2.7. ET calibration approach: 

Billesbach and Arkebauer (2012) performed a long-term direct measurement of ET and surface water 

balance in NSH from 2003-2009. This study found that the three ecosystems in the NSH (sub-irrigated 

meadow, dry valley, and uplands) behaved in a different way. The annual ET for sub-irrigated meadow, 

dry valley, and uplands were 735 mm, 462 mm, and 280 mm, respectively. However, these measurements 

could only be considered point measurements compared the NSH scale. A study by Szilagyi et al. (2011) 

applied a Calibration-Free Evapotranspiration Mapping Technique (CREMAP) covering the entire state of 

Nebraska, which will be referred to as the CREMAP model. It provided a monthly ET estimation from 

January 2000 to December 2009. This was used to calibrate ET, not only for the entire watershed but also 

for each land use, specifically pasture and ERC. From the literature review, although some papers used ET 

as a calibration parameter, none of the papers calibrated ET for each land use. The average ET from the 

CREMAP model for the study area was around 482 mm. Average pasture and ERC ET was 479 mm and 

511 mm, respectively.  
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In the NSH, there is very little runoff, so that it is often assumed that precipitation minus ET is equal to 

recharge. A study by Szilagyi et al. (2011) calculated the mean annual groundwater recharge across 

Nebraska using MODIS where the study utilizes 1-km 8-day composited MODIS surface temperature and 

basic atmospheric data. The monthly ET estimates resulted in an R2 of 0.8 – 0.9, while the annual estimates 

had R2 between 0.7-0.8. The mean annual ET estimated remained within 10% of the measured values. 

Another study by Rossman et al. (2014) evaluated how vadose zone lag time effects groundwater recharge 

in the NSH. They found that the recharge ranged from -204 mm (discharge in some areas where the lakes 

are clustered towards the western side of UML) to 143 mm (mainly towards the eastern and southern parts 

of the UML).  

3.2.8. Recharge calibration approach: 

Gilmore et al. (2019) used regional water table patterns to estimate the recharge rates in shallow aquifers. 

In the NSH, the mean annual recharge rates vary depending on soil type, land cover, climatic situation, and 

slope. The eastern part of the NSH has higher recharge rates (100-276 mm/yr) compared to the western 

parts, where recharge rates (0-60 mm/yr) are lower, or even discharge (0 to -386 mm/yr) can occur. For the 

UML watershed, the main discharge area is in the western part of the watershed, where lakes and wetlands 

are concentrated. The annual average recharge for the UML watershed is approximately 47 mm/yr 

compared to long-term mean recharge > 140 mm per year estimated in eastern Nebraska  (Szilagyi et al., 

2011). 

3.2.9. Calibration evaluation approach and metrics: 

A combination of manual and autocalibration using SWATCUP was used. Modeling results were evaluated 

using Nash-Sutcliffe Efficiency (NSE), R2, and percent bias (PBIAS). NSE (Nash and Sutcliffe, 1970), 

which ranges from −∞ 𝑡𝑜 1 , is often used to examine hydrological models’ predictive power. The NSE 

equation is: 

𝑁𝑆𝐸 = 1 − [
∑ (𝑌𝑖

𝑜𝑏𝑠 − 𝑌𝑖
𝑠𝑖𝑚)2𝑛

𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠 − 𝑌𝑜𝑏𝑠̅̅ ̅̅ ̅̅ )2𝑛

𝑖=1

] 

 

where: 𝑌𝑖
𝑜𝑏𝑠 is the ith observation for the constituent being evaluated; 𝑌𝑖

𝑠𝑖𝑚 is the ith simulated for the 

constituent being evaluated; 𝑌𝑜𝑏𝑠̅̅ ̅̅ ̅̅  is the mean of observed data for the constituent being evaluated, and n is 

the total number of observations. 

Regression analysis is a statistical method that allows examining relationships between two or more 

variables. Many types of regression analyses focus on the influence of one (or more) independent variable 

on a dependent variable. The coefficient of determination is a key output of regression analysis (Thomas 

and Tiemann, 2015). This coefficient is one of the most widely used statistical coefficients, specifically 
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when the main purpose is to predict a future outcome or test hypotheses. Barten (1987) discussed R2 and 

the following function presents a way to calculate this coefficient: 

𝑟2 =
𝐸𝑆𝑆

𝑇𝑆𝑆
=

𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑏𝑦 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠
 

𝑇𝑆𝑆 = 𝐸𝑆𝑆 + 𝑈𝑆𝑆 =  ∑(𝑦̂ − 𝑦̅)2 + ∑(𝑦 − 𝑦̂)2 

where: 𝑦̅ is the average value of the dependent variable; 𝑦 represents the observed values of the dependent 

variable, and 𝑦̂ denotes the estimated value of y for the given x value. 

PBIAS = 
∑ (𝑌𝑖

𝑜𝑏𝑠−𝑌𝑖
𝑠𝑖𝑚)𝑛

𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠)𝑛

𝑖=1

*100 

where 𝑌𝑖
𝑜𝑏𝑠 is the ith observation for the constituent being evaluated and 𝑌𝑖

𝑠𝑖𝑚 is the ith simulated value of 

the constituent being evaluated. 

Percent Bias (PBIAS) measures the average tendency of the simulated values whether they are larger or 

smaller than their observed counterparts. A PBIAS of 0.0 is optimal, where low-magnitude values indicate 

more accurate model simulations (Yapo et al., 1996). In hydrological models, PBIAS can help to examine 

the model tendency towards underestimation (positive values) or tendency towards overestimation 

(negative values) (Van Liew et al., 2005). 

3.2.10. Encroachment simulation approach 

according to the literature review (Afinowicz et al., 2005; Ahl et al., 2008; Giulia Lembo Caterina, 2012) 

specific parameters changing can represent conversion of pasture to ERC. To perform the conversion of 

pasture to ERC (e.g. to simulate encroachment) the parameters shown in Table 3-3 were changed in each 

one of the corresponding pasture classes’ HRUs (i.e. PA10, PA15, PA25, PA40, PA55, and PA70).  
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Table 3-3: Pasture and Eastern Redcedar parameters to simulate encroachment. 

Parameters Parameters Definition PAST* Value FRST** Value 

CANMX Maximum Canopy Storage (mm H2O) 10 28 

Sol_K Saturated hydraulic conductivity (mm/hr) 70 116 

Sol_ZMX Maximum rooting depth of soil profile (mm) 525 8024 

CN2 Initial SCS runoff curve number for 

moisture condition II 

50 37 

BLAI Maximum potential leaf area index 4 5 

CHTMX Maximum canopy height (m) 0.5 10 

RDMX Maximum root depth (m) 2 3.5 

* PAST: Pasture, **FRST: Eastern Redcedar 

3.2.11. Single and Dual Risk Analysis for water quality evaluation 

We assumed that discharge in the Loup River near Genoa (USGS gauge 06793000) would mimic that of 

the UML due to ERC encroachment. The reduction in flow was then subtracted from the discharge near 

North Bend (USGS gauge 06796000) on the Platte River. Measured concentrations of nitrate and atrazine 

were available at gauge stations 06793000 and 06796000 for the years 2010 to 2014 on an annual basis. 

Based on the baseline and encroachment scenarios, the concentration for nitrate and atrazine was estimated 

at gauge station 06796000 to assess the impact of encroachment on water quality in the Platte River. A 

relation between the flow vs concentration downstream at North Bend gauge was established.  

For example, for the nitrate 1.44 mg L-1 in table 6, this number came from calculating total nitrate 

concentration at North Bend over the total water flowing through North Bend for each year and 1.44 is the 

average of all years. The total nitrate concentration was estimated based on the measured nitrate value 

multiplied by the recorded discharge quantity at North Bend. For the baseline (no encroachment) the same 

gauge reading was taken. To reflect encroachment scenarios impacts on the discharge reduction at North 

Bend, North Bend discharge represent the cumulative discharge coming from Duncan and Genoa as shown 

in Figure 3-8. While Duncan is not subjected to flow reduction (assuming the encroachment occurred only 

in the UML) only Genoa would transfer the percentage of reduction from Dunning. Genoa discharge is 

reduced in the same percentage as Dunning but using the Genoa discharge measurement. 

The ranges of reported discharges at these gauges were collected for the same period used for SWAT 

simulation (2000-2020). The discharge at Dunning, Genoa, Duncan and North Bend were 13.9, 29.9, 50.5, 

and 130 m3s-1 respectively. While for the water quality parameters, the ranges reported nitrate and atrazine 

for the years from 2010-2014 the nitrate concentrations ranged from 1.04 to 1.64 mg L-1  while the atrazine 

concentrations ranges from 0.35 to 3.36 µg L-1. 
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Additionally, a risk factor was calculated for nitrate and atrazine exposure for the Platte River for each 

encroachment scenario based on the method adopted by Hansen et al. (2019). This study identified the risk 

of nitrate and atrazine exposure individually (single risk factor, SRF) and together (dual risk factor, DRF) 

for nitrate and atrazine in several locations within Nebraska. The SRF was determined based on sets of 

measured data and maximum contamination level (MCL) at 10 mg L-1 for nitrate and 3 µg L-1 for atrazine. 

The SRF analysis is: 

𝑅𝐹𝑀𝐶𝐿
95𝑡ℎ% =

95𝑝𝑒𝑟𝑐(𝑀𝐸𝐶𝑖)

𝑀𝐶𝐿
 

were 𝑅𝐹𝑀𝐶𝐿
95𝑡ℎ% is the risk factor for the contaminant based on the 95th percentile of the MEC and MCL, 

𝑀𝐸𝐶𝑖 is the measured environmental concentration at time i (based on yearly step according to the collected 

data), MCL is the maximum contaminant level according to Environmental Protection Agency acceptable 

concentrations for drinking water. were 𝑅𝐹𝑀𝐶𝐿
95𝑡ℎ% < 0.8 safe, 0.8 to 1.0 Low Risk; 1.0 to 2.0 At Risk and > 

2.0 is considered High Risk. A study by (Rhoades et al., 2013) showed that exposure to nitrate and atrazine 

together increased the occurrences of Non-Hodgkin Lymphoma in Nebraska. Hansen et al (2019) calculated 

the DRF by:  

DRF = RI(x1) + RI(x2) 

where RI(x) is the risk integer of contaminant (x) and DRF is the dual risk factor. A general term was 

applied to these different integer values for dual risk factor: 0 = Very Low Risk; 1 = Low Risk; 2 = Medium-

Low Risk; 3 = Medium Risk; 4 = Medium-High Risk; 5 = High Risk; and 6 = Very High Risk. 

3.3. Results and Discussion 

3.3.1. SWAT Model Calibration and Validation  

The calibrated model was compared to monthly observed discharge, ET, and recharge. Table 3-4 lists the 

parameters used in the SWAT calibration, their default ranged and calibrated values. It was found that 

discharge was most sensitive to the groundwater parameters (i.e., GW_Delay) and HRU-related parameters 

(i.e., LAT_TTIME and CANMX). For ET, GW_REVAP and soil-related parameters (i.e., Sol_AWC, 

Sol_K) were the most influential. Autocalibration was initially conducted before applying different manual 

calibration simulations using the mentioned parameters. The optimized values of the SWAT parameters are 

valid for all HRUs in the model domain. 
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Table 3-4: SWAT model calibration parameters, default ranges and the calibrated 

values. 

SWAT 

Parameters 
Default range 

Calibrated 

Value 
Parameter definition 

GW_REVAP.gw 0.02 – 10 8 Groundwater “revap” coefficient. 

GW_DELAY.gw 0 – 500 days 31 Groundwater delay time (days). 

ESCO.hru 0 – 1 0 Soil evaporation compensation factor. 

EPCO.hru 0 – 1 0.1 Plant uptake compensation factor. 

CN.mgt Varies Varies Initial SCS runoff curve number for 

moisture condition II 

LAT_TTIME.hru 40 – 4500 Varies Lateral flow travel time (days) 

CANMX.hru 0 – 28 0, 10, 28 Maximum canopy storage (mm H2O) 

Sol_AWC.sol 0 – 1 0.22 Available water capacity of the soil 

layer (mm H2O/mm soil) 

Sol_K.sol 2 – 450 Varies Saturated hydraulic conductivity 

(mm/hr) 

PND_FR.pnd 0 – 1 0.1 Fraction of subbasin area that drains 

into ponds. 

WET_FR.pnd 0 – 1 0.1 Fraction of subbasin area that drain 

into wetlands. 

PLAPS.sub -500 – 500 3.2 Precipitation lapse rate (mm H2O/km). 

TLAPS.sub -50 – 50 0 Temperature lapse rate (oC/km). 

3.3.2. Results of Discharge simulation: 

The simulated discharge was close to the measured discharge pattern over the calibration (2000-2009) and 

validation periods (2010-2020) (Figure 3-5). Considering the low variability in discharge, where all the 

values lie between 10 to 20 m3s-1, we did not anticipate acceptable values for the metrics. The Q95/Q5 is 

only 1.41 with a Q95 of  16.3 m3s-1 and Q5 of 11.5  m3s-1 (Hobza and Schepers, 2018).  

For the calibration period, the R2, NSE, and PBIAS were 0.01, -8.38, and 19%, respectively. For the 

validation period the R2, NSE, and PBIAS were 0.03, -8.99, and 21%, respectively. 

Though the R2 and NSE an unsatisfactory rating, the PBIAS was satisfactory. The simulated discharge for 

both calibration and validation periods were close to the observed averages. For the calibration period, the 

average simulated discharge was 12.1 m3s-1 compared to the observed 13.2 m3s-1. For the validation period, 

the simulated discharge was 16.3 m3s-1 compared to 14.4 m3s-1 of the observed discharge. 

file:///E:/Dissertation/Dunning%20Historical%20Flowout%20Analysis%20Moving%20Average.xlsx
file:///E:/Dissertation/USGS%20Sandhills%20Gauges%20Comparison%20Selected%20Genoa%20Duncan%20and%20North%20Bend%20Gauges.xlsx
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Additionally, the model check achieved 0.95 baseflow percentages which approaches the recorded baseflow 

near the UML outlet based on USGS Science Data Catalog (SDC). Hobza and Schepers (2018) stated that 

the streamflow out of the NSH, groundwater discharges (defined as baseflow) ranges from 0.8 to 0.95.  

We hypothesize that the underprediction during the high flows may be due to the hundreds of oxbow lakes 

in the watershed. These oxbows would reduce the peak flow and increase the length of the falling limb of 

the hydrograph. As illustrated in Figure 3-5, the model responded to the large precipitation events, but the 

stream did not. In the only other study where SWAT was used in the NSH, modeling statistics were also 

poor, with NSE of -1.13, and PBIAS of 21.1 (Strauch and Linard, 2009).   

 

Figure 3-5. SWAT simulated vs observed discharge for the Upper Middle Loup watershed for the calibration (2000-2009) and 

validation periods (2010-2020) 

3.3.3. Results of ET simulation: 

The simulated ET for the entire watershed (2000-2009) was 483 mm compared to the CREMAP model 

average of 482 mm (~99%). The NSE and PBIAS metrics were 0.63 (Satisfactory) and -0.51 (Very Good), 

respectively.  Additionally, ET model results for pasture and ERC were similar to the observed values with 

NSE, R2, and PBIAS of 0.64, 0.65, and 0.82% for pasture and 0.45, 0.46, and 0.01% for ERC, respectively. 

3.3.4. Results of recharge simulation: 

Rossman et al. (2014) estimated an average recharge across the UML watershed of 56 mm/yr from 2000-

2009. The calibrated SWAT model simulated an average of 54.2 mm/yr. This shows that the SWAT 

simulation of recharge achieved a very close estimation to Rossman et al (2014) (~97%). With our model 

simulations yielding discharge, ET, and recharge values comparable to measured values, our encroachment 

scenario results will thus have less uncertainty. 

3.3.5. Evaluation of water balance: 

Looking at the model outputs in terms of water balance in the baseline scenario, the model predicted 

precipitation 659.3, runoff 3.7, percolation 75.55, evapotranspiration 483.2, deep recharge 3.78, lateral flow 

67.62, REVAP 72.11 (all in mm). To evaluate the water balance different zones were considered to 

conceptualize and explain how water entering and leaving the system is partitioned and/or routed. This 

file:///E:/Dissertation%20Year%202/02%20-%20Modelling/01SWATwithEncScenraios/Scenarios/Sim%2011%20-%20modified%20CANMX%20slightly%20from%20Sim%2010/0%20-%20No%20%20%20encroachment%20scenario%20-%20overallET%20483mm/Default%20SNR_ET_UML_Mon_2000_2009_Subbasins_Class_comparison_chart%20ET483.2mm_try.xlsx
file:///E:/Dissertation%20Year%202/02%20-%20Modelling/01SWATwithEncScenraios/Scenarios/Sim%2011%20-%20modified%20CANMX%20slightly%20from%20Sim%2010/0%20-%20No%20%20%20encroachment%20scenario%20-%20overallET%20483mm/SNR_ET_Values_Subbasins_Landuse_2000-2009_ET483.2mm_try.xlsx
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paper scored a simulated water balance of 122mm compared to 121mm of reported water balance (99.1%) 

giving a significance improvement compared to 26% scored by Strauch; and Linard;, (2009).   

3.3.6. Encroachment Scenarios 

Different encroachment scenarios were simulated using the calibrated SWAT model. The scenarios were 

conducted by changing the pasture classes in the modified land use (PA10, PA15, PA25, PA40, PA55, and 

PA70) into ERC. The general trend indicates that as the encroachment percentage increases, the average 

discharge decreases (Figure 3-6). An increase of ERC to 11.9% yielded a reduction in discharge from 12.1 

to 11.5 m3 s-1. Additionally, the fact that the watershed is baseflow-dominated (i.e., more than 90% of the 

lateral flow is baseflow) makes the impacts of interception from ERC roots significant. Thus, any increase 

of ERC reduces lateral flow (feeding the streams). As encroachment continues to 41% and 100%, discharge 

to the UML decreases by 24.4% and 46.5%, respectively. 

 

Figure 3-6: Simulated discharge and evapotranspiration for various levels of Easter Redcedar 

encroachment in the Upper Middle Loup watershed. 

As shown in Table 3-5, different hydrological components were evaluated for each of the simulated 

encroachment scenarios. The ET increases as the encroachment percentage increases. 11.9% encroachment 

resulted in a 0.43% increase in ET compared to the baseline, while a 100% encroachment resulted in a 4% 

increase. On the contrary, the discharge decreased as the encroachment increased with a -4.59% reduction 

for the first 11.9% of encroachment and reducing to -46.5% with 100% encroachment. Zou et al., (2018) 

stated that a complete conversion of rangeland to ERC (i.e., 100%) encroachment would lead to streamflow 

(i.e., discharge) reductions of 20-40%. Similarly, while the ET increased (with the increase of 

encroachment), the percolation increased from 75 mm to 95 mm at full encroachment (Figure 3-7). Though 

several studies have shown that recharge decreases from ERC encroachment, others have shown increases. 

For example, Tobella et al., (2014) showed increased infiltration rates and recharge potential with 
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afforestation in simi-arid agroecosystems. Zhang et al. (2020) argue that under normal condition of land-

use change (i.e., transition from plant cover to another one), recharge usually decreases. However Shao et 

al. (2019) states that with the with smaller values of Sol_K, the lateral flow of SWAT decreased, thus 

allowing more water to recharge groundwater (increase in percolation and deep recharge). This can be seen 

from the results in our study, where the ranges of Sol_K are from 2.91 to 450 mm hr-1 with the majority of 

HRUs (2202 out of total 3342 HRUs) has a range of Sol_K 116 to 180 mm hr-1, where a decrease in lateral 

flow was accompanied by an increase in both percolation and deep recharge. 

Table 3-5: Water balance components from each encroachment scenario compared to the baseline scenario. All parameter units 

are in mm except for CN (unitless) and discharge (m3 s-1). CN=Curve Number 

 Baseline 11.9% 16.1% 28% 40.6% 57.5% 72.5% 100% 

Precipitation 659.3 659.3 659.3 659.3 659.3 659.3 659.3 659.3 

Runoff 3.7 3.36 3.27 3.05 2.88 2.69 2.53 2.03 

Percolation 75.55 77.37 78.18 80.53 83.05 86.54 89.53 95.72 

Evapotranspiration 483.2 485.3 486 488 490 493.1 495.6 502.7 

% ET from 

baseline 
 - 0.43% 0.58% 0.99% 1.41% 2.05% 2.57% 4.04% 

Deep Recharge 3.78 3.87 3.91 4.03 4.15 4.33 4.48 4.79 

Lateral Flow 67.62 64.67 63.49 60.07 56.36 51.34 46.95 36.43 

REVAP* 72.11 73.84 74.6 76.84 79.23 82.53 85.37 91.19 

Potential 

Evapotranspiration 
939.3 939.5 939.5 939.7 939.8 940.1 940.3 940.9 

Average Curve 

Number 
50.12 48.97 48.53 47.3 45.98 44.17 42.56 38.09 

Discharge 12.06 11.51 11.29 10.67 10.01 9.12 8.34 6.45 

% disch from 

baseline 
 - -4.59% -6.37% -11.5% -16.9% -24.4% -30.8% -46.5% 

 * REVAP: amount of water moving from shallow aquifer to plant/soil profile 
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Figure 3-7: Comparison of simulated ET (evapotranspiration) vs percolation for each redcedar encroachment 

scenario. 

3.3.7.  Impact of Eastern Redcedar Encroachment on the Platte River 

Though less than 1% of the Loup River watershed is currently ERC, the rate of encroachment has increased 

recently (Lower Loup NRD, 2017). The land use in the Loup River watershed is similar to the UML 

watershed, though there is less pasture in the Loup River watershed (80% vs 94%) and more cropland (15% 

vs <1%). As shown in Figure 3-8, the Loup River watershed discharges at Genoa (USGS gauge 06793000) 

to the Platte River, and the encroachment changes in the UML and Loup River watershed impact the 

discharge at North Bend (USGS gauge 06796000) on the Platte River. 
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Figure 3-8: Map illustrating the Upper Middle Loup Watershed relative to the Loup River Watershed and Sand Hills 

Assuming the impact on discharge of ERC encroachment would be similar in the Loup River watershed as 

the UML watershed, though there is less pasture and more cropland, we evaluated the potential impact of 

ERC encroachment on the entire Loup River watershed and its impact on the Platte River discharge and 

water quality based on the results obtained from the UML watershed encroachment scenarios. 

To examine this, we evaluated discharge from three USGS gauges on the Loup and Platte Rivers (Figure 

3-9). These locations are the Loup River near Genoa (USGS gauge 06793000), Platte River near Duncan 

(USGS gauge 06774000), and Platter River at North Bend (USGS gauge 06796000). The gauge station 

06774000 is upstream of the confluence with the Loup River, while the gauge station 06796000 is 

downstream of the tributary. The analysis of the discharge from these three gauges shows similar peaks and 

baseflow. 
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Figure 3-9: (a) Comparing Flow at Genoa gauge (at Loup River) with Duncan and North Bend Gauges (at Platte River) from 

2010 to 2019; (b) average daily discharge for the three sites for the drought year 2012 

The average discharge in the Loup River from 2000-2019 was 13.8 and 28.9 m3s-1 at Dunning and Genoa, 

respectively. The stream discharge on the Platte River was 51.8 and 128.8 m3s-1 at Duncan (upstream of 

confluence) and North Bend (downstream of confluence), respectively for the same period. Therefore, 23% 

of the discharge at the North Bend gauge originates from the Loup River (9a). In the drought year 2012 

(9b) the average monthly flows were 23.8, 29.8, and 87.4 m3s-1 at Genoa, Duncan, and North Bend, 

respectively (that is 80%, 57%, and 67% of the average flow from 2000-2019 for the three stations). Any 

impact on the discharge from the ERC encroachment will not only influence the discharge in the Loup 

River, but also the discharge in the Platte River.  

a 

b 

file:///E:/Dissertation/USGS%20Sandhills%20Gauges%20Comparison%20Selected%20Genoa%20Duncan%20and%20North%20Bend%20Gauges.xlsx
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Assuming encroachment to the Loup River would be equally impacted by ERC encroachments, the 

discharge at Genoa would decrease from 28.9 to 25.6 m3s-1, 21.9 m3s-1, and 15.5 m3s-1 for 28%, 57.5%, and 

100% encroachment, respectively. At the North Bend gauge on the Platte River, the average discharge 

would decrease from 126.9 m3s-1 to 123.6 m3s-1, 119.9 m3s-1, and 113.5 m3s-1 for 28%, 57.5%, and 100% 

encroachment of the Loup River watershed, respectively.  

This reduction in discharge to the Platte River will also impact water quality, a concept noted by Zou et al. 

(2015). The assessment of discharge at USGS gauges, at Genoa, Duncan, and North Bend, is important to 

estimate the potential changes in water quality at both Loup and Platte Rivers. The available water quality 

measures of both nitrate and atrazine (from 2010 to 2014) were averaged at both Genoa and North Bend. 

The nitrate concentrations were 0.67 mg/L and 1.44 mg/L, while the atrazine concentrations were 0.51 µg/L 

and 1.22 µg/L at Genoa and North Bend stations, respectively. 

Accounting for the reduced discharge to the Platte River, concentrations of nitrate increased from 1.44 to 

1.61 m L-1, and atrazine increased from 1.22 to 1.37 µg L-1 for the 100% encroachment (Table 3-6). The 

findings show that an increase by 11.0% and 12.3% for nitrate and atrazine, respectively, in the Platte River. 

The SRF for both nitrate and atrazine is Low Risk (1) on a scale from 0 (Considered Safe) to 3 (High Risk). 

At 28% encroachment, the SRF for atrazine increases to 2 (At Risk) and the DRF increases from Medium 

Low Risk to Medium Risk, based on our modeling assumptions.  These predictions support the hypotheses 

that an increase in ERC encroachment in the Loup River watershed will impact both water quantity and 

quality in the Platte River. While our modeled results have substantial uncertainties, they highlight the 

general concept that the amount of water discharging from NSH streams is relevant to cities of Lincoln and 

Omaha in terms of water security and water resources management plans. 

Table 3-6: Estimates of water quality parameters and Single Risk Factor at North Bend Gauges on the 

Platte River for years 2010-2014 

ERC 

Scen. 

Nitrate Concentrations mg L-1 

Avg. 2010 2011 2012 2013 2014 SRF 
Risk 

Class 

baselin

e 1.44 1.64 1.04 1.61 1.34 1.58 0.817 low risk 

11.9% 1.46 1.66 1.05 1.63 1.35 1.59 0.826 low risk 

16.1% 1.46 1.67 1.06 1.63 1.36 1.60 0.830 low risk 

28% 1.48 1.69 1.07 1.65 1.37 1.62 0.840 low risk 

40% 1.50 1.71 1.08 1.68 1.39 1.64 0.851 low risk 

57% 1.53 1.74 1.10 1.71 1.42 1.67 0.866 low risk 

72% 1.55 1.77 1.12 1.73 1.44 1.70 0.880 low risk 

100% 1.61 1.84 1.16 1.80 1.50 1.77 0.915 low risk 

ERC 

Scen. 

Atrazine Concentrations µg/Liter 

Avg. 2010 2011 2012 2013 2014 SRF 
Risk 

Class 

baselin

e 
1.22 0.56 0.52 1.33 3.36 0.35 0.98 low risk 
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11.9% 1.23 0.56 0.52 1.34 3.39 0.35 0.99 low risk 

16.1% 1.24 0.56 0.52 1.34 3.41 0.35 1.00 low risk 

28% 1.25 0.57 0.53 1.36 3.45 0.36 1.01 risk 

40% 1.27 0.58 0.54 1.38 3.49 0.36 1.02 risk 

57% 1.29 0.59 0.55 1.40 3.55 0.37 1.04 risk 

72% 1.31 0.60 0.56 1.43 3.61 0.37 1.06 risk 

100% 1.37 0.62 0.58 1.48 3.76 0.39 1.10 risk 

 

Future work includes the coupling of SWAT with MODFLOW. The SWAT model is limited in its ability 

to simulate groundwater processes. Using SWAT-MODFLOW in this baseflow-dominated system will 

improve modeling results. This coupling of the surface and the groundwater model can help improve the 

calibration of the model, thus improve the estimation of discharge. Coupling with MODFLOW will also 

provide the change in the water table as ERC encroachment increases. The reduction in the water table will 

impact the thousands of lakes and wetlands, as well as the ecosystem, in the NSH.  

Another aspect of future improvement would be more accurate ERC encroachment predictions by applying 

machine learning or some ecological model to better predict the spatial and temporal spread of ERC. 

Incorporating climate change models will not only impact the water resources directly but will influence 

the growth rate of ERC based on changes in temperature, precipitation, and CO2. 

3.4. Conclusions  

In this study, the SWAT model was utilized to examine the impacts of Eastern Redcedar encroachment on 

the water resources in the Nebraska Sandhills, a major recharge zone for the High Plains Aquifer, and the 

Platte River, a major water source for the cities of Omaha and Lincoln. The scenarios ranged from 11.9% 

to 100% encroachment. The results showed a reduction in discharge as the encroachment increased. With 

full encroachment, the flow in the Upper Middle Loup River was reduced by nearly half (53% of the original 

flow), and the evapotranspiration increased 4.04% from baseline. Assuming the same reduction in discharge 

for the Loup River watershed, a major tributary to the Platte River, the discharge in the Platte River will 

decrease from 126.9 m3s-1 to 123.6 m3s-1 and 113.5 m3s-1 for 28% and 100% encroachment, respectively. 

Additionally, we evaluated the impacts of the Eastern Redcedar encroachment on water quality in the Loup 

and Platte Rivers. When assuming constant nitrate and atrazine loading, but decreased stream flow, model 

results follow the intuitive pattern of increased concentrations of nitrate and atrazine in the Platte River. 

With 100% ERC encroachment, concentrations could increase by 11.0% and 12.3% for nitrate and atrazine, 

respectively, in the Platte River. The risk level for atrazine could increase from Low Risk to At Risk at just 

28% encroachment, and the dual risk of nitrate and atrazine increases from Medium Low Risk to Medium 

Risk.   
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Chapter 4. The combined impact of redcedar encroachment and climate change on water 

resources in the Nebraska Sand Hills 

4.1. Introduction 

Historically, water has been considered the backbone of human civilization and the main factor in its 

development. Increasing water demand related to the intensification of agriculture, industry, and domestic 

water uses and decreasing freshwater supplies have made it critical to continuously explore additional water 

sources and ways to achieve universal water access. Globally, the agricultural sector uses between 60% to 

90% of water (Adeyemi et al., 2017; Pedro-Monzonís et al., 2015) and according to the Food and 

Agriculture Organization, FAO, (2017) and Doungmanee (2016), this accounts for nearly 72.5% of 

freshwater withdrawals. Agriculture is considered the major user of groundwater and surface water in the 

United States (U.S.) with 80% consumption of water resources (up to 90% in the Western U.S. (Hrozencik, 

2021). Because 60% of irrigation in the U.S. relies on groundwater, aquifer overexploitation can 

significantly impact crop production. More importantly, groundwater depletion in the irrigated High Plains 

accounts for ~50% of groundwater depletion (Scanlon et al., 2012b). 

The High Plains Aquifer represents an invaluable source of groundwater for the U.S. The aquifer is in the 

central part of the U.S. expanding from South Dakota in the north to Texas in the south. It underlies parts 

of eight states (Overmann, 2021) with a total area of approximately 453,248 km2 and total recoverable 

water in the storage of about 3.6 trillion m3 (Virginia L McGuire, 2017). The dust bowl of the 1930s and 

the development of modern pump hydraulics, improvements in irrigation technology, and availability of 

low-cost energy increased the number of wells drilled into the aquifer from 21,000 wells to 30,000 in 1980 

(Gutentag et al., 1984) then increased to 200,000 wells in recent years (Hennings and Lynch, 2022). This 

reliable source of water helped transform this part of the U.S. into the “Breadbasket of the World” (Steward 

and Allen, 2016). However,   groundwater withdrawals have greatly exceeded R rates by approximately 3 

to 1 (American Ground Water Trust, 2002), decreasing the water storage by 410 km3 from 1935 to 2011 

(Haacker et al., 2016b). The largest reduction in water storage has been recorded in the Central and Southern 

Plains where the storage has declined by more than 11.9% per decade. The water level decline has been 

minimal in the Northern High Plains, the location of the Nebraska Sand Hills (NSH) (Haacker et al., 2016b). 

The NSH is considered a major recharge zone for the High Plains Aquifer. According to Rossman et al., 

(2014), the sand dunes in the NSH are composed of eolian sand (well-sorted) and fine-to-medium grained 

soil. This region has high sand content ranging from 94 to 97% which yields high infiltration rates and 

minimal overland flow. Eggemeyer et al., (2009) stated that 36% of the High Plains Aquifer area and 65% 

of its water are located under Nebraska (specifically NSH) where 6-14% of the annual precipitation (P) 

recharges the aquifer.  Szilagyi et al. (2011) estimated that the largest mean annual recharge rates (200±85 
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mm yr-1) occur in the southern and eastern parts of the NSH while smaller rates (40±59 mm yr-1) occur in 

the western part. This supports the importance of the NSH as a recharge zone for the High Plains Aquifer. 

In the NSH, the largest land use threat is the eastern redcedar (Juniperus Virginiana) (Heavican, 2021). 

Redcedar, a native Nebraska flora, was historically controlled by wildfires (Axmann and Knapp, 1993). 

The reduction in wildfires and the planting of redcedar for windbreaks have increased the number of trees 

in the NSH. Shrestha (2022) found that the area of redcedar in this part of Nebraska increased from 

686.30±409.58 km2 in 1990 to 1521±316.09 km2 in 2020 based on stratified random estimates. The 

encroachment rate thus varied between 2.26 and 11.19% annually. Applying the Markov-chain and cellular 

automata model to the encroachment trend estimated redcedar cover would increase from 5,016 km2 to 

14,256 km2 by 2099.  

Kishawi et al., (2023) used different scenarios that considered redcedar encroachment spatially throughout 

the watershed with different encroachment levels ranging from 11.9% to 100% of grassland converted to 

redcedar. The study found, for example, that 16.1% redcedar encroachment in the NSH can reduce D by 

12% and increase evapotranspiration and percolation by 0.6% and 3.4%, respectively. With 100% 

encroachment, the D would be reduced by nearly 50% while the recharge increased by 26% thus potentially 

increasing the concentration of atrazine in the Platte River by 16.3% to 48.1%. Starks and Moriasi (2017) 

considered 10% increments of redcedar encroachments in the North Canadian River watershed in central 

Oklahoma. They found that if rangeland was replaced by redcedar completely (100% encroachment), a 

reduction in D could reach 112% of the current municipal water demand and 89% of the projected 2060 

demand. Zou et al., (2018) found that a complete conversion of rangeland to redcedar would reduce D by 

20% to 40%. None of these studies considered the additional impact of climate change on the hydrology of 

the watershed.  

Both land use and climate change can cause significant changes in water resources. Hydrological models 

can help understand how these variables interact and impact the water cycle. Several studies have evaluated 

the impact of climate change on the hydrological cycle at the watershed scale. Some studies applied 

different representative concentration pathways (RCPs) scenarios for different climate models under 

Coupled Model Intercomparison Project 5 (CMIP5) using RCP2.6, RCP4.5, and RCP8.5 (Ercan et al., 2020; 

Fant et al., 2017; Wang et al., 2020), or consider the impacts of changing CO2 on hydrological fluxes while 

applying climate models (Lee et al., 2018; Perazzoli et al., 2013). Many studies used the Soil Water 

Assessment Tool (SWAT) with climate models on different scales worldwide (Pandey et al., 2021; Touseef 

et al., 2021), in the U.S. (Ercan et al., 2020; Mueller-Warrant et al., 2019) and in Nebraska (Rehana et al., 

2018; van Liew et al., 2012). 

Few studies have also evaluated the combined impact of both land use and climate change (Petrovic, 2021; 

Teklay et al., 2021; Zhang et al., 2016). Petrovic, (2021) studied the impacts of both climate and land use 
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change on hydrology and found that the overall decline of annual flow is due to the decline in seasonal flow 

under combined scenarios.  Teklay et al. (2021) studied four land-use scenarios under climate projections 

from 2005-2015 and 2045-2055 using RCP4.5 and RCP8.5. The results showed that surface runoff 

increased by 5.1% while baseflow decreased by 6.5%. Under expansion of irrigation crops and forest, D 

decreased by 12.5% and 5.2%, while evapotranspiration increased by 4.8% and 8.9%, respectively. Under 

RCP8.5, D, surface runoff, and evapotranspiration increased by 34.3%, 51.8%, and 12.2% showing that 

climate change was more important than land-use change. Zhang et al. (2016) agreed with this conclusion 

by assessing separate and combined hydrological impacts of land use and climate change between 1995-

2014 and 2015-2024. Zhang et al. (2016) applied two land-use models in SWAT and applied hypothetical 

climate scenarios based on analyzing climatic observations. It was concluded that a slight reductions in 

surface runoff and baseflow was due to land-use change.  

The overall objective of this study is to simulate the combined impact of climate change and redcedar 

encroachment on the water balance in the NSH including impacts on recharge. The specific objectives of 

this study are to: i) evaluate the impact of historical climate and land use on D (D), recharge (R), deep 

recharge (DR), and actual evapotranspiration (ETa) (representing the main water balance components) 

within the study area during the historical period (2000-2019), ii) compare the impact of historical and 

most-likely climate and land use change scenario (2020-2099) on the water balance components, and iii) 

compare the impact of historical and 16 hypothetical scenarios (different combinations of redcedar 

encroachment and climate change) (2020-2099) on the water balance components. 

4.2. Methodology 

4.2.1. Study Area 

The study area is the Upper Middle Loup River (UMLR) watershed (4,954 km2), located in the NSH. The 

NSH, located in the western part of Nebraska, has a total area of 51,000 km2 (Figure 4-1). It consists of 

sand dunes with interdunal watersheds connected with an unconfined aquifer with many lakes and wetlands, 

predominantly in the western part. The climate in the study area is semi-arid with mean annual P 571.04 

mm yr-1 and mean temperature of around 9.54 °C for the historical period (2000-2019). The study area is 

covered by 93% pasture, 4.3% wetlands, 1.1% lakes and minimal cropland, urban and forest (Kishawi et 

al., 2023). 
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Figure 4-1: Map of the Upper Middle Loup River (UMLR) watershed (pink area) within the Nebraska Sand Hills (yellow area) 

and Nebraska (red line). 

 

While currently less than 1% of the study area is covered by eastern redcedar (Juniperus Virginiana), 

256,653 ha of grassland was converted to woody vegetation(predominantly redcedar) from 2007 to 2017 in 

Nebraska (Fogarty et al., 2020).  Nearly 21,000 ha of Sand Hills grassland was converted to woody 

vegetation. The encroachment rate has increased significantly east, north and south of the UMLR watershed  

(Shrestha, 2022). Once controlled by wildfires, fire suppression and tree planting for windbreaks has led to 
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the expansion of redcedar encroachment. Redcedar, concentrated near streams and windbreaks, would 

encroach into the grassland.  

The thickness of the High Plains Aquifer can exceed 300 m with most of the sand dunes covered with 

grassland. The High Plains Aquifer is composed primarily of unconsolidated, poorly sorted clay, silt, sand, 

and gravel and was laid 10 to 12 million years ago by fluvial deposition from streams that flowed eastward 

from the Rocky Mountains during the Pliocene. The High Plains Aquifer in Nebraska and South Dakota is 

an unconfined system composed of sedimentary deposits of Quaternary, Tertiary, and Cretaceous age. The 

aquifer system thins from south to north and from west to east where the base of the aquifer slopes eastward 

at approximately 1.5 meter per kilometer. The depth of the water table varies from surface D to more than 

150 m. Generally, the aquifer is found from 15 to 90 m below the surface. Saturated thickness ranges from 

zero (mainly near the western edge) to about 304 m in west-central Nebraska (Sand Hills region) but overall 

averages around 60 m (Gutentag et al., 1984). 

4.2.2. Scenario modeling approach 

SWAT is a semi-distributed ecohydrological model operating on a daily time scale at a watershed scale 

(Arnold et al., 1998; Dile et al., 2016; Mundetia, 2019). The main components of the water balance equation 

are the daily change in water storage (ΔWS) as controlled by P, ETa, and water yield. Water yield is given 

by the contribution of surface runoff, lateral flow, and groundwater circulation. Water yield is partially 

depleted by transmission losses from tributary channels and water abstractions. The D is calculated at the 

outlet of the UMLR watershed. The percolation represents the amount of water moving downward across 

the vadose zone when soil moisture exceeds field capacity. Percolation replenishes the shallow unconfined 

aquifer and can be assumed as R. Water stored in the shallow aquifer may replenish soil moisture in the 

soil profile (through upward flux induced by capillary fringe) or streamflow (through base flow or return 

flow). DR is the amount of water replenishing the deep confined High Plains Aquifer originating from 

seepage in the shallow aquifer or directly from percolation exiting through the bottom of the soil profile. 

All hydrological fluxes are expressed in units of mm of water height except D that is expressed as m3 s-1. 

As input, SWAT requires P and crop-specific potential evapotranspiration (ETp) and is based on the concept 

of hydrological response units (HRUs), which are areas identified by similarities in soil, land cover, and 

terrain attributes. The potential root water uptake depends on soil water content and CO2 levelsand is 

reduced when the soil profile does not contain sufficient water in dry periods or CO2 level increase related 

to reduction in leaf conductance. SWAT typically uses the ArcSWAT interface to set up model inputs. 

ArcSWAT is a public domain software which works in the licensed ArcGIS environment. ArcSWAT 

version 2012.10._5.21 was used in this study. Kishawi et al., (2023) constructed and calibrated SWAT for 

the UMLR. For more details on model inputs, calibration and validation, see Kishawi et al., (2023). 
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The methodology adopted in this paper is shown in . SWAT was calibrated by Kishawi et al., (2023) and 

used in this study to perform simulations under different combinations of climate (Section 2.3) and land 

use change (Section 2.4) from 2000 to 2099. The D, ETa, DR and R simulated under the historical period 

(2000-2019) were compared to those ones obtained under: i) the most likely combined land use and climate 

change scenario and ii) 16 hypothetical scenarios combining four redcedar encroachments (0.5%, 2.4%, 

4.6% and 11.9%) and two extreme climate projections split in two sub-period (2020-2050 and 2051 and 

2099).  

 

Figure 4-2: A schematic overview of the adopted methodology based on the data collected from Coupled Model Intercomparison 

Project (CMIP5) database and selected redcedar encroachment scenarios in the Upper Middle Loup River (UMLR) watershed.  

Baseline redcedar coverage is 0.5%. 

 

Therefore, a total of 18 scenarios (blue box) were built to evaluate the simulations of the water balance 

components in SWAT: 

1) Historical climate and land use scenario with daily climate data (CO2 of 330 ppm) recorded between 

2000 and 2019 and encroachment of 0.5% (black box in ); 

2) Most likely climate and land use change scenario with climate data (CO2 of 717 ppm in 2020-2050 

and CO2 of 935 ppm in 2051-2099) estimated between 2020 and 2099 and encroachment of 2.4% 

in 2020-2050 and 4.6% in 2051-2099 (orange box in ). 
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3) 16 climate and land use change scenarios combining extreme climate projections (dry and wet) 

split in two sub-periods (red boxes in ) and four different encroachment scenarios (green boxes in).  

4.2.3. Climate change scenario 

The climate raw data were obtained from an ensemble of General Circulation Models (GCMs) using the 

Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections website (Maurer et al., 2007) accessed 

through https://esgf-node.llnl.gov/search/cmip5/ (CMIP, 2021). The full list includes 60 models. Each 

model presents four Representative Concentration Pathways (RCPs, i.e., 2.6, 4.5, 6.0, and 8.5) by 

potentially obtaining 240 climate simulations. Since 18 sets of RCPs with corresponding climate data were 

missing from the remaining climate models, a total of 222 climate projections were available. Table 2.S in 

the Supplementary Material includes the full list of the 222 climate models with their corresponding RCPs.  

Through the website explorer, the coordinates of the pixels representing the study area were used to 

download the climate models’ raw data (P, minimum, and maximum temperature) on a daily time step from 

2000 and 2099. We considered the historical period from 2000 and 2019 and climate projections from 2020 

and 2099. A spatial-average historical mean annual rainfall and spatial-average projected mean annual 

rainfall were established using 17×5 pixels (85 pixels), however only 44 pixels were within the watershed. 

The  ETp at daily time resolution was calculated with the Hargreaves equation based on minimum and 

maximum temperatures (Hargreaves and Samani, 1985). The aridity index (AI) based on the Food and 

Agriculture Organization (FAO) is a climate indicator which is used for measuring the degree of dryness 

as it is expressed as the ratio between mean annual P over ETp (Spinoni et al., 2015). The mean annual AI 

values were calculated for each GCM. The 222 mean annual AI values were ranked in ascending order. 

Three models defined as dry, median, and wet climate scenarios were selected at 5th, 50th, and 95th 

percentiles, respectively, as recently done by Adane et al. (2019). 

4.2.4. Land use change scenarios 

The likely scenario of redcedar encroachment was created using a combination of neural network and 

Markov-chain cellular automata model. The current state of redcedar in 1990, 2015, and 2020 were 

extracted using multi-layer perceptron (MLP) neural network, trained and optimized with multiple hidden 

layers (3-5), regularization, and dropout parameters (Shrestha, 2022). The classified redcedar map of 1990 

and 2015 were then used to calculate the transition probability using Markov-chain analysis. The transition 

potential was calculated using MLP with single hidden layer using environmental variables that affect the 

potential redcedar distribution. The variables included elevation, aspect, topographic position index, total 

insolation, duration of insolation, wind dispersion, distance to road, distance to windbreak, distance to 

stream, and depth to water table. Cellular automata method was then used to combine the transition 

probability and transition potential using multi-objective land allocation algorithm to predict the current 

(2020) and future redcedar scenarios (2050 and 2100). The predicted model of 2020 was validated against 

https://esgf-node.llnl.gov/search/cmip5/
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the classified redcedar map. The model with the highest accuracy predicted an encroachment of 2.4% by 

2050 and 4.6% by 2099. For more details on the MLP neural network and Markov-chain cellular automata 

model, refer to Shrestha (2022). 

In addition to the most likely scenario, hypothetical land use scenarios were also evaluated. Hypothetical 

redcedar encroachment scenarios were created by combining the evergreen and mixed forest classes of 

2016 National Land Cover Database (NLCD) data. With redcedar comprising at least 90% of the conifer 

basal area in the Great plains and at early stage of encroachment occurring as understory species, mixed 

forest was also included (Filippelli et al., 2020).  The NLCD data derived from Landsat images at 30 m 

resolution do not detect such occurrences of redcedar and therefore we assumed that including the mixed 

forest could also compensate for undetected redcedar that are significant for future encroachment scenarios. 

The baseline map (0.5% redcedar) was reclassified as a binary image with the presence of redcedar 

represented by a value of 1 while absence by 0. A morphological filter with size between 3 × 3 m to 7 × 7 

m (Haralick et al., 1987)  was used to create a hypothetical scenario of different encroachment levels 

(Kishawi et al., 2023). Dilation is a process where a zero value in a binary image is replaced by 1, simulating 

the process or encroachment from established redcedar pixels. 

4.3. Results 

4.3.1. Historical climate and land use scenario (2000-2019) 

Table 4-1 shows the annual values of P, ETp, R, DR, ETa, and D under the historical scenario (2000-2019). 

The SWAT input climate variables are P and ETp. The mean annual P was 571.0 mm with the driest year 

in 2012 (P=239.7 mm) and the wettest year in 2009 (P=748.6 mm). Annual P sums are characterized by 

high temporal variability while annual ETp values are close to their mean annual value. 

Table 4-1: Annual P, R, DR, ETa, ETp, and D in the historical period (2000-2019) under 0.5% redcedar cover. 

Year P mm R mm DR mm ETa mm ETp mm D m3s-1 

2000 475.9 4.2 0.2 418.3 894.3 8.0 

2001 490.4 19.5 1.0 474.2 903.7 8.1 

2002 314.5 0.02 0.0 368.5 947.4 6.3 

2003 456.6 12.6 0.6 419.6 884.5 6.5 

2004 535.1 5.7 0.3 434.4 867.7 6.8 

2005 603.0 111.9 5.6 487.8 877.9 9.6 

2006 418.8 0.5 0.0 401.1 929.9 7.9 

2007 580.2 34.4 1.7 476.2 925.2 8.2 

2008 668.8 68.3 3.3 496.8 826.5 9.5 

2009 748.6 150.5 7.6 524.4 752.8 12.6 

2010 675.4 112.5 5.7 547.8 883.5 14.3 

2011 698.8 113.8 5.7 516.3 804.8 14.1 

2012 239.7 1.2 0.1 384.9 1041.4 10.4 

2013 544.1 9.5 0.5 398.3 832.5 8.5 

2014 599.8 65.7 3.3 453.0 828.3 10.8 

2015 691.3 93.3 4.7 519.0 874.6 11.2 
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2016 616.4 65.4 3.3 546.4 915.8 11.7 

2017 589.4 47.5 2.3 491.2 863.1 10.8 

2018 737.0 129.7 6.5 519.2 813.1 12.7 

2019 737.0 128.3 6.4 546.1 859.5 14.0 

Mean 571.0 58.7 2.9 471.2 876.3 10.1 

SD 139.85 51.90 2.61 57.73 61.53 2.57 

CV 24.49 88.37 88.67 12.25 7.02 25.04 

Min 239.7 0.0 0.0 368.5 752.8 6.3 

Max 748.6 150.5 7.6 547.8 1041.4 14.3 

Range 508.9 150.5 7.6 179.3 288.6 8.0 

 

4.3.2. Most likely combined land use and climate change scenario (2020-2099) 

All 222 mean annual AI-values ranged from 0.333 to 0.426 and can be grouped within the semi-arid class 

(0.2<AI<0.5) (Spinoni et al., 2015). The 5th (AI=0.35), 50th (AI=0.371), and 95th (AI=0.392) percentiles 

correspond to the climate models ACCESS1-0.1 (RCP 4.5), CMCC-CM.1 (RCP 8.5), and Ec-Earth.8 

(RCP 2.6), respectively. These three climate models were selected to represent dry, median, and wet 

climate scenarios, respectively. illustrates the frequency distribution of mean annual AI values for each 

climate model in CMIP5. 

 

Figure 4-3: Frequency distribution of mean annual aridity index (AI) values. 

Vertical dashed lines depict the 5th (red line), 50th (black line), and 95th (magenta 

line) percentiles that denote the dry (access1-0.1), wet (cmcc-cm.1), and median (ec-

earth.8) climate scenarios, respectively. The annual AI-values lie between 0.20 and 

0.50 (range of the semi-arid climate class). 

 

The median climate scenario is considered as the most likely climate projection. The mean annual P is 

predicted to slightly decrease by 7.6% from 571.0 mm (2000-2019) to 527.9 mm (2020-2099). The mean 

annual temperatures are expected to increase from 9.5 °C in the historical period (2000-2019) to 13.6 °C in 

the period (2051-2099). The CO2 concentration is expected to increase to 717 ppm by 2050 and 935 ppm 

by 2099. The results indicate that a warming pattern will be expected with 4.1 oC increase on average over 



 

 

81 

the 100-year period, and this will be associated with lower-than-normal P and higher-than-normal ETp. 

Details of P and temperatures are included in the Supplemental Material. 

According to Shrestha, (2022), the most likely redcedar coverage will be 2.4% by 2050 and 4.6% by 2099 

with most of the encroachment occurring around the streams and water bodies. These encroachment rates 

were combined with the median climate scenario and represent the most likely projection in terms of 

redcedar cover and future P and ETp patterns. As shown in Table 4-2, ETa decreased from 471.2 mm to 

406.65 mm by 2050 and  to 328.8 mm by 2099. The reduction in ETa can be attributed to the root water 

uptake stress induced by increased CO2 concentrations. The results showed that the minimal increase in 

encroachment would not have a significant impact on ETa in the study area. Thus, CO2 concentration has 

the most impact on ETa compared to encroachment levels under the most likely scenario. 

Table 4-2: Model simulations of ETa, R, DR, and D for the historical (0.5% redcedar) and most-likely scenario. 

Redcedar cover 

  2020-2050 2051-2099 

CO2
 ppm 717 935 

  Median climate scenario 

 P (mm) 535.70 524.00 

0.5% 

ETp (mm) 

663.48 473.77 

2.40% 663.49 * 

4.60% * 482.45 

0.5% 

ETa (mm) 

420.08 330.91 

2.40% 420.28 * 

4.60% * 341.12 

0.5% 

R (mm) 

80.64 142.25 

2.40% 81.05 * 

4.60% * 143.09 

0.5% 

D (m3 s-1) 

10.2 10.3 

2.40% 13.1 * 

4.60% * 14.1 

0.5% 

DR (mm) 

4.03 7.11 

2.40% 4.05 * 

4.60% * 7.15 

* The 2.4% encroachment was simulated for 2020-2050 and 4.6% was simulated for 2051-2099. Together 

(under the median climate scenario) they form the most-likely scenario for 2020-2099. 

The impact of increased CO2 concentrations on the plant stomata and consequently on the water balance 

components is shown in Figure 4-4. The increase of CO2 level from 717 ppm (in the period 2020-2050) to 

935 ppm (in the period 2051-2099) causes a reduction of 22% in the ETa thereby increasing D by 7.6% 

and R by 75% between the two periods. The DR is likely to double even though it remains a residual 

portion of mean annual P. The model simulation provides insight into what should be expected if the 

encroachment conditions occurred under the most likely climate scenario in the coming 100 years. 



 

 

82 

 

Figure 4-4: Annual simulated stacked percentages of ETa, R, and D, compared to decadal averages of P from 2000 to 2099. 

 

Additionally, a statistical analysis of the historical (2000-2019) and projected model simulations for 2020-

2050 and for 2051-2099 were performed. Table 4-3 lists the descriptive statistics of P, ETp, D, R, and DR. 

Compared to the historical period, projected P, and ETa  are expected to decrease by 10%, and 14%, 

respectively while T and D will likely increase by 23% and 30% for the period 2020-2050. Similarly, P and 

ETa will decrease by 8% and 32% while D and T will increase by 40% and 43% respectively for the period 

2051-2099. 

Table 4-3: Descriptive statistics of P, ETp, ETa, D and R  under the historical scenario and most likely combined scenario. SD, 

CV, Min and Max indicate standard deviation, coefficient of variation, minimum and maximum, respectively. 

Historical climate with 0.5% redcedar cover (2000-2019)  

 P (mm) ETp
  (mm) ETa  (mm) D (m3 s-1) R (mm) DR (mm) 

Mean  571.04 876.32 471.17 10.1 58.73 2.94 

SD  139.85 61.53 57.73 2.57 51.90 2.61 

CV  24.49 7.02 12.25 25.40 88.37 88.67 

Min  239.68  752.8 368.5 6.3 0.02 0.01 

Max  748.59  1041.4 547.8 14.3 150.5 7.60 

Projected median climate scenario with 2.4% encroachment (2020-2050)  

 P (mm) ETp
  (mm) ETa  (mm) D (m3 s-1) R (mm) DR (mm) 

Mean  512.9  585.21 406.42 13.1 80.77 4.04 

SD  100.8   51.73 23.31  2.2 52.53 2.58 

CV  19.65  8.84 5.73  16.9 65.03 63.90 

Min  341.17   499.74 358.54  9.0 2.62 0.33 

Max  684.14  697.65 451.54  17.0 200.30 10.01 

Projected median climate scenario with 4.6% encroachment (2051-2099) 

 P (mm) ETp
  (mm) ETa  (mm) D (m3 s-1) R (mm) DR (mm) 

Mean  524.0  419.72 318.18  14.1 141.08 7.07 

SD  87.0  37.88 15.80  3.2 65.24 3.17 

CV  16.6  9.02 4.97  22.82 46.24 44.78 

Min  328.76  356.85 295.09  7.3 31.92 2.06 
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Max  730.39  497.48 346.67  18.7 275.60 13.85 

 

As shown in Table 4-4, we report a 38% and 37% increase in R and DR for 2020-2050 and an increase of 

140% for both R and DR from 2051-2099 periods, respectively. Because climate and hydrological factors 

are interacting in a complex manner, analyzing these factors in isolation may not reflect the actual impacts.  

The sensitivities of annual ETa, D and R to annual AI are shown in Figure 4-5. The sensitivity is 

quantified by comparing the change in AI to the change in the water balance components. While the 

sensitivities of ETa and D to AI are weak, as indicated by the corresponding correlation coefficients 

( =—0.57 and = —0.34, respectively), AI shows significant impact on R as indicated by the strong 

positive correlation ( =+0.93). The scatterplot in Figure 4-5 corroborates the reported correlation 

coefficients between AI and change in ETa, D, and R. 

 

Figure 4-5: The relation between change in aridity index, AI and the change in (a) ETa (green circles), (b) D (blue circles) and, 

(c) R (red circles) under the most-likely combined scenario. 

 

Table 4-4: Decadal averages of ETa, R, DR, and D and their relationship with the change in carbon dioxide (CO2), P, and 

temperature (T) in terms of percentage of change comparing median to historical scenario 
 2000-2019 2020-2050 2051-2099 2000-2019 2020-2050 2051-2099 

 mean annual values % of change from historical 

ETa (mm) 471.17 406.42 318.18 - -14% -32% 

R (mm) 58.73 80.77 141.08 - 38% 140.2% 

DR (mm) 2.94 4.04 7.07 - 37% 140.4% 

D (mm) 10.1 13.1 14.1 - 30% 40% 

CO2 (ppm) 565 717 935 - 27% 65% 

P (mm) 571.04 512.9 524 - -10% -8% 

T mean (℃) 9.5 11.7 13.64  23% 43% 

 

4.3.3. Combination of 16 hypothetical land use and extreme climate change scenarios (2020-2099)  

In this section, a comparison between 16 hypothetical projected scenarios (2020-2099) and the historical 

scenario (2000-2019) was evaluated. For this scenario, the mean annual ETa under the historical period is 

equal to 471 mm. Combined with the 4.6% encroachment level, the wet climate scenario projected a slight 

increase in ETa to 476 (2020-2050) and 473 (2051-2099). For the dry climate scenario, the R increased by 

0.2 mm and 1.2 mm for CO2 levels of 515 ppm and 350 ppm, respectively. On the contrary, under the wet 

climate scenario the R decreased by 0.1 mm and 2.9 mm for CO2 levels 290 ppm and 148 ppm, respectively. 
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When considering the change in CO2 concentrations under the 0.5% encroachment (in the historical period 

2000-2019) and compared to the projections, R decreased by 9.2 mm under the dry scenario but increased 

by 3.5 mm under the wet scenario. Under 11.9% encroachment and the dry climate scenario, R decreased 

by 10.2 mm. However, R increased by 0.3 mm under the wet scenario with 11.9% encroachment. DR 

slightly increased as encroachment level increases while it decreased when CO2 decreased. 

The heat maps in Figure 4-6 show the ETa, D, and R under wet and dry scenarios over different 

encroachment simulations. The values range from high (red) to low (green) values. Under the dry scenario, 

ETa values are lower compared to the wet scenario. Also, higher D values (red cells) are more frequent in 

the first period of the century (2020-2050) compared to the second period of the century (2051-2099). 

Results indicate that higher ETa and lower D and R are likely to occur in the second period. The wet 

scenario, with RCP2.6, the projection shows lower than normal CO2 levels. ETp is not stressed and therefore 

ETa is higher-than-normal. 

 

Figure 4-6: Heat maps of annual values of ETa, D and R under different combinations of encroachment scenarios from 2020-

2099 (y-axis) and climate projections (x-axis) 0.5% refers to historical redcedar encroachment 

As encroachment increased, D decreased under both dry and wet scenarios by less than 1 m3 s-1 regardless 

of CO2 levels. Additionally, under the same encroachment rate, but different CO2 concentrations, there was 

also a slight change in D by less than 1 m3 s-1. It can be concluded that different CO2 levels had very little 

impact on D. The D had similar trends in the second period (2051-2099) under both dry and wet scenarios 

while in the first period (2020-2050) the wet scenario yielded higher D than the dry scenario. 

The DR had similar trends as R under the climate and land use scenarios. As encroachment rates increased, 

the results indicated an increase in DR under all simulations except the wet scenario in the second period 

(2051-2099). Both dry and wet scenarios under the same land use conditions resulted in a reduction in DR 
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as the CO2 levels increased towards the end of the century. On the contrary, the median climate scenario 

resulted in an increase of DR for the same period. 

ETa is more sensitive to climate change than land use change. ETa increased by 2.6% when encroachment 

increased to 11.9% and increased by 3.0% from 471 to 485 mm under the wet scenario from the historical 

period 2000-2019 to the 2051-2099 period. This was due to the reduction in CO2 from 365 to 100 ppm. The 

combined impact of encroachment and climate change caused ETa to increase by 4.5% when considering 

the wet scenario and 11.9% encroachment. The largest impact of CO2 concentration on ETa was under the 

median scenario when CO2 increased to 800 ppm (2020-2050) where there was a reduction of 33.1% 

compared to the first third of the century. This reduction in ETa is due to the stomata closing as CO2
 

concentrations increase. The later period 2051-2099 showed a lower reduction of 11% compared to the first 

period. 

4.4. Discussion 

4.4.1. Resource Identification Initiative 

In this study we assessed how climate and land use change influenced the hydrological cycle and 

management of water resources in a large watershed. We adopted a modeling scenario approach to 

determine the most likely forecast and 16 less probable predictions to support decision-making. The 

approach covering the full spectrum of plausible encroachments and climate projections represents a 

novelty in the body of literature. This is done through evaluating the most probable combined scenario 

(most probable projection and well-modelled encroachment) while the other scenarios (characterized by 

low occurrence probability) represent a sensitivity analysis. As far as we know, this approach was used for 

the first time in the NSH. 

Three climate scenarios (i.e., dry, wet, and median), selected according to the AI criterion, were simulated 

using the corresponding CO2 levels. We gave more importance to the median climate scenario related to 

the highest probability of occurrence while the extremely dry (5th percentile) and wet (95th percentile) 

climate forecasts indicate the impact of potential climate hazard on water resources. Another novel aspect 

of this study is the influence of CO2 levels on stomata closure and its impact on the most relevant water 

balance component output, namely the ETa. While the default CO2 level in the SWAT model is 330 ppm, 

several CO2 projections have been used in different studies. (Kishawi et al., 2023)Ficklin et al. (2009) 

modeled hydrological responses of stomata closure to two CO2 emissions (i.e., 550 and 970 ppm). Another 

study presented by van Liew et al., (2012) used three CO2 levels (330 ppm, 525 ppm, 475 ppm) in SWAT 

from 2040 to 2059. The study did not elaborate on progressively increasing the CO2 values over different 

years, rather focused on replacing baseline 330 ppm value with the new 525 and 475 ppm values based on 

the selected scenarios. Lee et al., (2018) used six climate scenarios to assess the impacts of various CO2 

concentrations on the water resources. This was conducted under different CO2 emissions including 330 
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ppm (baseline), 590 ppm, and 850 ppm. However, in this study different RCPs have specific CO2 emissions 

based on the literature review and IPCC reports (i.e., IPCC report 5). In our study, the dry, median, and wet 

scenarios consider RCP4.5, RCP8.5 and RCP2.6, respectively. Using data based on Pachauri et al. (2015), 

we varied the CO2 concentrations for each climate scenario. With the shallow aquifer near the stream and 

lower parts of the sand dunes, the deep roots of redcedar can significantly impact the lateral flow and 

streamflow D in the watershed (Kishawi et al., 2023). 

Land use change plays an important role in controlling hydrological fluxes at watershed scale. In this study 

we considered the most likely redcedar encroachment forecast by using a combination of neural network 

and Markov-chain cellular automata model. The expected increase in encroachment induced higher-than-

normal R, except under the wet scenario from 2051 and 2099 when we report higher-than-normal ETa 

induced by CO2 emissions below 330 ppm. Previous studies have shown that encroachment causes an 

increase in percolation and DR (Zou et al., 2018). According to Zou et al., (2018), the increased infiltration 

is attributed to a reduction in soil bulk density associated with a reduction in compaction and an increase in 

soil organic matter. The reduction in compaction is a result of decreased grazing intensity (Zou et al., 2014).  

In this study we found that under the dry scenario, the increase in R was 59.7% of that simulated under the 

historical scenario. Under the same land use conditions, both dry and wet scenarios resulted in a reduction 

in R as the CO2 levels increased towards the end of the century, however the median scenario resulted in 

an increase in 2020-2050 then followed by a lower increasing rate in 2050-2099. R was  about five times 

larger under the wet scenario (R=159 mm) than under the dry scenario (R=30 mm) in 2020-2050. 

Our results mostly reflect the findings reported in the body of literature. Increasing CO2 concentrations will 

likely impact the plant stomata and guard cells by increasing root water uptake stress which will limit the 

potential and ETa losses. Xu et al., (2016) indicated that under elevated CO2, stomata tend to close because 

of greater depolarization causing K+, Ca2+, and Cl- in plant guard cells to decrease while H+ concentrations 

remain at high levels. This can cause the plant stomata to shut down, reduce leaf transpiration leading to an 

increase in D and recharge rate. Aasamaa and Sõber (2011) studied the responses of stomatal conductance 

to simultaneous changes in two environmental factors selected from a set of factors including air humidity, 

leaf water potential, air CO2 and light intensity. The concentration of the abscisic acid (ABA) increases in 

the cytosol of stomatal guard cells after a decrease in leaf or air water potential. Additionally, the results 

indicated that the ‘stomatal closing’ stimuli, such as high CO2 and darkness, cause cytosolic levels in the 

cells to increase. Roelfsema et al., (2004) assessed the plant hormone ABA during drought and how it 

depolarizes guard cells in intact plants. The study concluded that the combined activation of selected anion 

channels leads to the transient depolarization of guard cells where the ABA response correlates with the 

transient extrusion of Cl2 from guard cells and a rapid but confined reduction in stomatal aperture. 
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Xu et al. (2016) also supported this conclusion by stating that elevated CO2 concentrations  are among the 

main factors affecting the stomata behavior. However, it was mentioned that elevated CO2 concentrations 

generally cause reductions in stomatal density, stomatal conductance, leaf transpiration, and 

canopy/ecosystem evapotranspiration, but other factors might induce a reverse response when elevated CO2 

concentrations interact with these climatic factors. 

Kishawi et al., (2023) reported that increased encroachment reduced stream D in the UMLR watershed. In 

this study we observed that stream D is likely to increase as higher-than-normal CO2 concentrations are 

expected, by decreasing evapotranspiration losses. The results show an increase in the stream D up to 14.1 

m3 s-1 (39.6%) compared to the historical period.  As a conclusion from the sensitivity analysis (16 combined 

land use and climate change modeling scenarios) presented in this study, evapotranspiration, recharge, and 

stream D were more influenced by the change in climate rather than to the change in land use in this 

watershed. 

However, we report some limitations in our approach that might be subject to future work improvements. 

The feedbacks in the soil-plant-atmosphere continuum were missing in the model set up and should be 

described in the future when considering the impact of climate and land use change on the hydrological 

cycle. Some output fluxes including water pumping from shallow and deep aquifers, transferring water 

outside the watershed, management practices were ignored in this study and might be included in future 

studies to integrate information on ecosystem services related to the water cycle.  Potential improvement 

of this modeling scenario approach could include the simulation of soil erosion, the tracking of nitrogen 

and phosphorus, fertilizers and pesticides in the study area. 

4.5. Conclusion 

This study analyzed the hydrological responses in the Upper Middle Loup River watershed in the Nebraska 

Sand Hills under different redcedar encroachments and climate projections.  SWAT was used to evaluate 

the impact of different combinations of climate and land use change on the hydrological cycle in the study 

area. Our results predicted a slight decrease in P but the expected increase in temperature and CO2 levels is 

likely to cause the plant stomata to close, resulting in a significant reduction in evapotranspiration 

(specifically in the last part of this century). The CO2 concentrations are more important than the projected 

P and temperature in influencing the water budget in the Upper Middle Loup River watershed.  

The most probable combined land use and climate change scenario was given by two encroachment levels 

of 2.4% from 2020-2050 and 4.6% from 2051-2099 under the median climate projection (corresponding to 

the 50th percentile of the AI distribution). The results showed that an increase in CO2 was accompanied by 

a dramatic decrease in ETa and an increase in D, specifically over the last decades of the century. The 

decision-makers can benefit from the scenario modeling approach presented in this paper that can help 

support optimal management of water resources  
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4.6. Supplementary materials 

4.6.1. Historical and future precipitation and temperature projections 

The monthly mean precipitation (P) and maximum and minimum temperatures (T) based on historical 

values and future predictions are illustrated in Figure 4-7. The predictions of the three scenarios (wet, 

median, and dry) agree with the historical records in terms of the rainy months (May to July) as shown in 

Figure 4-7.a. July and August are the hottest months of the year in the study area as shown in Figure 4-7.b 

and Figure 4-7.c. July (the warmest month) has the largest differences between the historical and predicted 

P in wet, median, and dry scenarios with 32.6 mm, 18.2 mm, and 23.6 mm respectively, with all scenarios 

having less P compared to the historical period. There are fewer differences in the cooler months (October 

to February) ranging from 0.27 mm to 9.71 mm. 

 

 

 
Figure 4-7: Comparing monthly average (a) precipitation, (b) maximum temperature, and (c) minimum temperature, for historical 

(1981-2019), future predictions (2020-2099), and the absolute differences. 

The wet scenario predicts higher P in specific years (760 mm and 763 mm in years 2035 and 2040, 

respectively) compared to the median scenario (highest predicted year 730 mm in 2088) while the dry 
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scenario projects less P as expected (Figure 4-8.a). The averaged maximum and minimum temperature 

values indicate an increasing trend between 2020 and 2099. Looking at Figure 4-8.b and Figure 4-8c, the 

median and wet scenario curves have a similar pattern for both maximum and minimum temperatures. 

However, after the year 2070, the wet scenario tends to have higher peaks compared to the median scenario. 

The difference can be related to the fact that the projected T values are higher than the historical T and 

consequently ET0 will be higher than normal. Only in the wet scenario, the increase in ETp will be 

moderate. 

The projected multi-year averages of P are 464 mm yr-1, 521 mm yr-1, and 520 mm yr-1, in the dry, median, 

and wet scenarios, respectively. This result demonstrates that the average P for the median scenario exceeds 

the wet scenario projection.  This agrees with the results by Adane et al. (2019), where they had higher P 

for the median scenario multi-years-average than the wet scenario. The decadal average results show that 

the 100-year average precipitation for the wet, median, and dry are 524.7 mm, 525.4 mm, and 487.3 mm, 

respectively. 

Analyzing the multi-decadal averages, it was found that both wet and dry scenarios project a steady decrease 

of precipitation up to 2080 (for wet) and 2090 (for dry) then an increase up to 2099. The median and wet 

scenarios curves predict an increasing trend of T from 2020 to 2099, where the median scenario curve is 

almost equivalent to the wet scenario curve. The projection indicates that temperature will rise from the 

historical average of 16 oC to 22 oC by the end of the 21st century (6 °C increase on average over the 100-

year). 
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Figure 4-8: Historic and projected trends (wet, median, and dry projection) for average annual a. precipitation, b. maximum 

temperature, and c. minimum temperature from 1981 to 2099. 

However, the dry scenario curve predicts an increase in T up to the year 2050 followed by a stable range of 

temperatures around 18 °C between 2050 and 2099 (2 °C increase in average over 100 years). The median 

scenario precipitation average was almost equivalent to the wet scenario average, however decadal averages 

of the wet scenario were higher than the median except for the 2070s and 2080s (Table 4-5). 

Table 4-5: Average decadal precipitation (mm) for the three climate models (dry, median, and wet climate scenarios) based on 

historical and future predictions for the Upper Middle Loup River (UMLR) watershed. 

Decade Wet Median Dry 

1981-1990 483 483 483 

1991-2000 518 518 518 

2001-2010 549 549 549 

2011-2020 591 586 582 

Historic Avg (mm) 535 534 533 

2021-2030 549 531 516 

2031-2040 553 507 463 

2041-2050 527 511 475 

2051-2060 513 485 448 

2061-2070 539 545 479 

2071-2080 455 525 444 

2081-2090 489 545 415 

2091-2099 531 519 474 

Projected Avg (mm) 519.5 521.0 464.3 
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4.6.2. Full list of all 222 climate models  

Table 0-6: List of the 222 GCMs with available RCPs that contain daily values of precipitation and minimum and maximum temperature within the study area 

GCMs RCP GCMs RCP GCMs RCP GCMs RCP GCMs RCP GCMs RCP 

access1-0.1 4.5 ccsm4.4 4.5 csiro-mk3-6-0.2 4.5 ec-earth.8 4.5 giss-e2-r-cc.1 4.5 ipsl-cm5a-mr.1 8.5 

access1-0.1 8.5 ccsm4.4 2.6 csiro-mk3-6-0.2 6.0 fgoals-g2.1 8.5 hadgem2-ao.1 8.5 ipsl-cm5a-mr.1 6.0 

bcc-csm1-1.1 4.5 ccsm4.5 8.5 csiro-mk3-6-0.3 8.5 fgoals-g2.1 4.5 hadgem2-ao.1 4.5 ipsl-cm5a-mr.1 4.5 

bcc-csm1-1.1 2.6 ccsm4.5 4.5 csiro-mk3-6-0.3 4.5 fgoals-g2.1 2.6 hadgem2-ao.1 2.6 ipsl-cm5a-mr.1 2.6 

bcc-csm1-1.1 8.5 ccsm4.5 6.0 csiro-mk3-6-0.3 6.0 fio-esm.1 8.5 hadgem2-ao.1 6.0 ipsl-cm5b-lr.1 4.5 

bcc-csm1-1.1 6.0 ccsm4.5 2.6 csiro-mk3-6-0.3 2.6 fio-esm.1 2.6 hadgem2-cc.1 8.5 ipsl-cm5b-lr.1 8.5 

bcc-csm1-1-m.1 4.5 cesm1-bgc.1 8.5 csiro-mk3-6-0.4 8.5 fio-esm.1 4.5 hadgem2-cc.1 4.5 miroc5.1 4.5 

bcc-csm1-1-m.1 8.5 cesm1-bgc.1 4.5 csiro-mk3-6-0.4 4.5 fio-esm.1 6.0 hadgem2-es.1 2.6 miroc5.1 8.5 

canesm2.1 2.6 cesm1-cam5.1 8.5 csiro-mk3-6-0.4 6.0 fio-esm.2 6.0 hadgem2-es.1 8.5 miroc5.1 6.0 

canesm2.1 4.5 cesm1-cam5.1 4.5 csiro-mk3-6-0.4 2.6 fio-esm.2 8.5 hadgem2-es.1 4.5 miroc5.1 2.6 

canesm2.1 8.5 cesm1-cam5.1 6.0 csiro-mk3-6-0.5 8.5 fio-esm.2 2.6 hadgem2-es.1 6.0 miroc-esm.1 2.6 

canesm2.2 2.6 cesm1-cam5.1 2.6 csiro-mk3-6-0.5 6.0 fio-esm.2 4.5 hadgem2-es.2 4.5 miroc-esm.1 8.5 

canesm2.2 4.5 cesm1-cam5.2 8.5 csiro-mk3-6-0.5 4.5 fio-esm.3 2.6 hadgem2-es.2 2.6 miroc-esm.1 4.5 

canesm2.2 8.5 cesm1-cam5.2 4.5 csiro-mk3-6-0.5 2.6 fio-esm.3 8.5 hadgem2-es.2 8.5 miroc-esm.1 6.0 

canesm2.3 4.5 cesm1-cam5.2 2.6 csiro-mk3-6-0.6 8.5 fio-esm.3 4.5 hadgem2-es.2 6.0 miroc-esm-chem.1 4.5 

canesm2.3 2.6 cesm1-cam5.3 4.5 csiro-mk3-6-0.6 6.0 fio-esm.3 6.0 hadgem2-es.3 6.0 miroc-esm-chem.1 6.0 

canesm2.3 8.5 cesm1-cam5.3 6.0 csiro-mk3-6-0.6 4.5 gfdl-cm3.1 6.0 hadgem2-es.3 4.5 miroc-esm-chem.1 8.5 

canesm2.4 4.5 cesm1-cam5.3 8.5 csiro-mk3-6-0.6 2.6 gfdl-cm3.1 2.6 hadgem2-es.3 8.5 miroc-esm-chem.1 2.6 

canesm2.4 8.5 cesm1-cam5.3 2.6 csiro-mk3-6-0.7 8.5 gfdl-cm3.1 8.5 hadgem2-es.3 2.6 mpi-esm-lr.1 8.5 

canesm2.4 2.6 cmcc-cm.1 8.5 csiro-mk3-6-0.7 2.6 gfdl-cm3.1 4.5 hadgem2-es.4 2.6 mpi-esm-lr.1 4.5 

canesm2.5 2.6 cmcc-cm.1 4.5 csiro-mk3-6-0.7 6.0 gfdl-esm2g.1 2.6 hadgem2-es.4 4.5 mpi-esm-lr.1 2.6 

canesm2.5 8.5 cnrm-cm5.1 8.5 csiro-mk3-6-0.7 4.5 gfdl-esm2g.1 8.5 hadgem2-es.4 6.0 mpi-esm-lr.2 2.6 

canesm2.5 4.5 cnrm-cm5.1 4.5 csiro-mk3-6-0.8 8.5 gfdl-esm2g.1 6.0 hadgem2-es.4 8.5 mpi-esm-lr.2 4.5 

ccsm4.1 6.0 cnrm-cm5.10 8.5 csiro-mk3-6-0.8 4.5 gfdl-esm2g.1 4.5 inmcm4.1 8.5 mpi-esm-lr.2 8.5 

ccsm4.1 4.5 cnrm-cm5.2 8.5 csiro-mk3-6-0.8 2.6 gfdl-esm2m.1 6.0 inmcm4.1 4.5 mpi-esm-lr.3 8.5 

ccsm4.1 8.5 cnrm-cm5.4 8.5 csiro-mk3-6-0.8 6.0 gfdl-esm2m.1 8.5 ipsl-cm5a-lr.1 4.5 mpi-esm-lr.3 2.6 

ccsm4.1 2.6 cnrm-cm5.6 8.5 csiro-mk3-6-0.9 8.5 gfdl-esm2m.1 2.6 ipsl-cm5a-lr.1 8.5 mpi-esm-lr.3 4.5 

ccsm4.2 8.5 csiro-mk3-6-0.1 8.5 csiro-mk3-6-0.9 4.5 gfdl-esm2m.1 4.5 ipsl-cm5a-lr.1 2.6 mpi-esm-mr.1 4.5 

ccsm4.2 6.0 csiro-mk3-6-0.1 6.0 csiro-mk3-6-0.9 2.6 giss-e2-h-cc.1 4.5 ipsl-cm5a-lr.1 6.0 mpi-esm-mr.1 8.5 

ccsm4.2 2.6 csiro-mk3-6-0.1 2.6 csiro-mk3-6-0.9 6.0 giss-e2-r.1 8.5 ipsl-cm5a-lr.2 8.5 mpi-esm-mr.1 2.6 

ccsm4.2 4.5 csiro-mk3-6-0.1 4.5 ec-earth.12 8.5 giss-e2-r.1 4.5 ipsl-cm5a-lr.2 4.5 mri-cgcm3.1 4.5 
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ccsm4.3 8.5 csiro-mk3-6-0.10 8.5 ec-earth.12 4.5 giss-e2-r.1 6.0 ipsl-cm5a-lr.2 2.6 mri-cgcm3.1 2.6 

ccsm4.3 4.5 csiro-mk3-6-0.10 4.5 ec-earth.12 2.6 giss-e2-r.1 2.6 ipsl-cm5a-lr.3 4.5 mri-cgcm3.1 8.5 

ccsm4.3 2.6 csiro-mk3-6-0.10 6.0 ec-earth.2 4.5 giss-e2-r.2 4.5 ipsl-cm5a-lr.3 8.5 noresm1-m.1 4.5 

ccsm4.3 6.0 csiro-mk3-6-0.10 2.6 ec-earth.6 8.5 giss-e2-r.3 4.5 ipsl-cm5a-lr.3 2.6 noresm1-m.1 8.5 

ccsm4.4 6.0 csiro-mk3-6-0.2 8.5 ec-earth.8 8.5 giss-e2-r.4 4.5 ipsl-cm5a-lr.4 8.5 noresm1-m.1 6.0 

ccsm4.4 8.5 csiro-mk3-6-0.2 2.6 ec-earth.8 2.6 giss-e2-r.5 4.5 ipsl-cm5a-lr.4 4.5 noresm1-m.1 2.6 
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